論文の概要: Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval
- arxiv url: http://arxiv.org/abs/2403.18405v1
- Date: Wed, 27 Mar 2024 09:46:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 17:37:28.003882
- Title: Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval
- Title(参考訳): 判例検索における関連判断のための大規模言語モデルの活用
- Authors: Shengjie Ma, Chong Chen, Qi Chu, Jiaxin Mao,
- Abstract要約: 本稿では,訴訟の関連判断に適した新規な数ショットワークフローを提案する。
LLMと人的専門家の関連判断を比較することで,信頼性の高い関連判断が得られたことを実証的に示す。
- 参考スコア(独自算出の注目度): 18.058942674792604
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Collecting relevant judgments for legal case retrieval is a challenging and time-consuming task. Accurately judging the relevance between two legal cases requires a considerable effort to read the lengthy text and a high level of domain expertise to extract Legal Facts and make juridical judgments. With the advent of advanced large language models, some recent studies have suggested that it is promising to use LLMs for relevance judgment. Nonetheless, the method of employing a general large language model for reliable relevance judgments in legal case retrieval is yet to be thoroughly explored. To fill this research gap, we devise a novel few-shot workflow tailored to the relevant judgment of legal cases. The proposed workflow breaks down the annotation process into a series of stages, imitating the process employed by human annotators and enabling a flexible integration of expert reasoning to enhance the accuracy of relevance judgments. By comparing the relevance judgments of LLMs and human experts, we empirically show that we can obtain reliable relevance judgments with the proposed workflow. Furthermore, we demonstrate the capacity to augment existing legal case retrieval models through the synthesis of data generated by the large language model.
- Abstract(参考訳): 訴訟検索に関する関連する判断を収集することは、困難で時間を要する作業である。
2つの訴訟の関連性を正確に判断するには、長い文章を読むのに相当な努力と、法的な事実を抽出し、法的な判断を下すための高度な領域の専門知識が必要である。
先進的な大規模言語モデルの出現により、近年の研究により、LLMを関連判断に使用することが期待されている。
それにもかかわらず、法ケース検索において、信頼性の高い妥当性判断に汎用的な大規模言語モデルを用いる方法は、まだ徹底的に検討されていない。
この研究ギャップを埋めるために、訴訟の関連する判断に合わせた、新しい数発のワークフローを考案する。
提案したワークフローは、アノテーションプロセスを一連の段階に分解し、人間のアノテータが採用するプロセスを模倣し、専門家による推論の柔軟な統合を可能にして、関連判断の精度を高める。
LLMと人的専門家の関連判断を比較することで,提案したワークフローと信頼性の高い関連判断が得られることを実証的に示す。
さらに,大規模言語モデルにより生成されたデータの合成により,既存の判例検索モデルを拡張する能力を示す。
関連論文リスト
- JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
本稿では,文書関連性を評価する際に,人間の認知過程をエミュレートする新しいエージェント・リランカであるJiceRankを紹介する。
我々は,推論集約型BRIGHTベンチマークを用いて判定Rankを評価し,第1段階の検索手法よりも性能が大幅に向上したことを示す。
さらに、JiceRankは、人気の高いBEIRベンチマークの細調整された最先端リランカと同等に動作し、ゼロショットの一般化能力を検証している。
論文 参考訳(メタデータ) (2024-10-31T18:43:12Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation [22.85652668826498]
本稿では,大言語モデル(LLM)に基づく法的な知識誘導型事例修正手法であるKELLERを紹介する。
犯罪や法律記事に関する専門的な法的知識を取り入れることで、大規模な言語モデルにより、原訴訟を犯罪の簡潔なサブファクトに正確に修正することができる。
論文 参考訳(メタデータ) (2024-06-28T08:59:45Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - LLM vs. Lawyers: Identifying a Subset of Summary Judgments in a Large UK
Case Law Dataset [0.0]
本研究は, 英国裁判所判決の大規模コーパスから, 判例, 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、
我々は、ケンブリッジ法コーパス356,011英国の裁判所決定を用いて、大きな言語モデルは、キーワードに対して重み付けされたF1スコアが0.94対0.78であると判断する。
我々は,3,102件の要約判断事例を同定し抽出し,その分布を時間的範囲の様々な英国裁判所にマップできるようにする。
論文 参考訳(メタデータ) (2024-03-04T10:13:30Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Prototype-Based Interpretability for Legal Citation Prediction [16.660004925391842]
我々は、前例と立法規定の両方に関して、弁護士の思考過程と平行してタスクを設計する。
最初の実験結果から,法の専門家のフィードバックを得て,対象の引用予測を洗練する。
我々は,弁護士が使用する決定パラメータに固執しながら,高い性能を達成し,解釈可能性を高めるためのプロトタイプアーキテクチャを導入する。
論文 参考訳(メタデータ) (2023-05-25T21:40:58Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Legal Element-oriented Modeling with Multi-view Contrastive Learning for
Legal Case Retrieval [3.909749182759558]
本稿では,多視点コントラスト学習目標を用いた訴訟検索のための対話型ネットワークを提案する。
ケースビューコントラスト学習は、関連する訴訟表現の間の隠れた空間距離を最小化する。
ケースの法的な要素を検出するために、法的な要素の知識を意識した指標を用いています。
論文 参考訳(メタデータ) (2022-10-11T06:47:23Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。