論文の概要: Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation
- arxiv url: http://arxiv.org/abs/2406.19760v1
- Date: Fri, 28 Jun 2024 08:59:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:20:03.801200
- Title: Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation
- Title(参考訳): 知識誘導型事例再構成による解釈可能な判例検索
- Authors: Chenlong Deng, Kelong Mao, Zhicheng Dou,
- Abstract要約: 本稿では,大言語モデル(LLM)に基づく法的な知識誘導型事例修正手法であるKELLERを紹介する。
犯罪や法律記事に関する専門的な法的知識を取り入れることで、大規模な言語モデルにより、原訴訟を犯罪の簡潔なサブファクトに正確に修正することができる。
- 参考スコア(独自算出の注目度): 22.85652668826498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legal case retrieval for sourcing similar cases is critical in upholding judicial fairness. Different from general web search, legal case retrieval involves processing lengthy, complex, and highly specialized legal documents. Existing methods in this domain often overlook the incorporation of legal expert knowledge, which is crucial for accurately understanding and modeling legal cases, leading to unsatisfactory retrieval performance. This paper introduces KELLER, a legal knowledge-guided case reformulation approach based on large language models (LLMs) for effective and interpretable legal case retrieval. By incorporating professional legal knowledge about crimes and law articles, we enable large language models to accurately reformulate the original legal case into concise sub-facts of crimes, which contain the essential information of the case. Extensive experiments on two legal case retrieval benchmarks demonstrate superior retrieval performance and robustness on complex legal case queries of KELLER over existing methods.
- Abstract(参考訳): 類似事例の開示のための訴訟検索は、司法公正性の維持に不可欠である。
一般的なウェブ検索とは違って、判例検索は、長く、複雑で、高度に専門化された法律文書を処理する。
この領域の既存の手法は、訴訟を正確に理解し、モデル化するために不可欠である法律専門家の知識が組み込まれているのを見落とし、不満足な検索性能をもたらすことが多い。
本稿では,大規模言語モデル(LLM)に基づく法的知識誘導型事例修正手法であるKELLERを紹介する。
犯罪や法律記事に関する専門的な法的知識を取り入れることで、大きな言語モデルにより、事件の本質的な情報を含む犯罪の簡潔なサブファクトに、原訴訟を正確に修正することができる。
2つの判例検索ベンチマークの広範囲な実験は、既存の方法よりもKELLERの複雑な判例クエリにおいて、より優れた検索性能と堅牢性を示す。
関連論文リスト
- LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
本稿では,訴訟の関連判断に適した新規な数ショットワークフローを提案する。
LLMと人的専門家の関連判断を比較することで,信頼性の高い関連判断が得られたことを実証的に示す。
論文 参考訳(メタデータ) (2024-03-27T09:46:56Z) - PILOT: Legal Case Outcome Prediction with Case Law [43.680862577060765]
判例法を用いて判例結果の予測を行う際の2つのユニークな課題を同定する。
第一に、意思決定において裁判官の基本的な証拠となる関連する前例を特定することが重要である。
第二に、初期の事例は異なる法的文脈に従う可能性があるため、時間とともに法原則の進化を考慮する必要がある。
論文 参考訳(メタデータ) (2024-01-28T21:18:05Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
類似事例検索(SCR)は、司法公正の促進に重要な役割を果たす代表的法的AIアプリケーションである。
既存のSCRデータセットは、ケース間の類似性を判断する際にのみ、事実記述セクションにフォーカスする。
本稿では,多視点類似度測定に基づく類似事例検索データセットMと,文レベル法定要素アノテーションを用いた包括的法定要素を提案する。
論文 参考訳(メタデータ) (2023-10-24T08:17:11Z) - An Intent Taxonomy of Legal Case Retrieval [43.22489520922202]
訴訟検索は、訴訟文書に焦点をあてた特別情報検索(IR)タスクである。
判例検索の新しい階層的意図分類法を提案する。
判例検索において,検索意図の違いによるユーザの行動と満足度に有意な差が認められた。
論文 参考訳(メタデータ) (2023-07-25T07:27:32Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Legal Element-oriented Modeling with Multi-view Contrastive Learning for
Legal Case Retrieval [3.909749182759558]
本稿では,多視点コントラスト学習目標を用いた訴訟検索のための対話型ネットワークを提案する。
ケースビューコントラスト学習は、関連する訴訟表現の間の隠れた空間距離を最小化する。
ケースの法的な要素を検出するために、法的な要素の知識を意識した指標を用いています。
論文 参考訳(メタデータ) (2022-10-11T06:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。