論文の概要: Deep Learning Segmentation and Classification of Red Blood Cells Using a Large Multi-Scanner Dataset
- arxiv url: http://arxiv.org/abs/2403.18468v1
- Date: Wed, 27 Mar 2024 11:28:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 17:17:54.348524
- Title: Deep Learning Segmentation and Classification of Red Blood Cells Using a Large Multi-Scanner Dataset
- Title(参考訳): 大規模マルチスキャナーデータセットを用いた深層学習のセグメンテーションと赤血球の分類
- Authors: Mohamed Elmanna, Ahmed Elsafty, Yomna Ahmed, Muhammad Rushdi, Ahmed Morsy,
- Abstract要約: RBC画像分割と分類のための2段階のディープラーニングフレームワークを提案する。
データセットは8つの異なるクラスを含む100K以上のRBCの非常に多様なデータセットである。
98.03%のIoUと96.5%の平均分類精度がテストセットで達成された。
- 参考スコア(独自算出の注目度): 0.18641315013048293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital pathology has recently been revolutionized by advancements in artificial intelligence, deep learning, and high-performance computing. With its advanced tools, digital pathology can help improve and speed up the diagnostic process, reduce human errors, and streamline the reporting step. In this paper, we report a new large red blood cell (RBC) image dataset and propose a two-stage deep learning framework for RBC image segmentation and classification. The dataset is a highly diverse dataset of more than 100K RBCs containing eight different classes. The dataset, which is considerably larger than any publicly available hematopathology dataset, was labeled independently by two hematopathologists who also manually created masks for RBC cell segmentation. Subsequently, in the proposed framework, first, a U-Net model was trained to achieve automatic RBC image segmentation. Second, an EfficientNetB0 model was trained to classify RBC images into one of the eight classes using a transfer learning approach with a 5X2 cross-validation scheme. An IoU of 98.03% and an average classification accuracy of 96.5% were attained on the test set. Moreover, we have performed experimental comparisons against several prominent CNN models. These comparisons show the superiority of the proposed model with a good balance between performance and computational cost.
- Abstract(参考訳): デジタル病理学は、人工知能、ディープラーニング、高性能コンピューティングの進歩によって、最近革命を遂げた。
高度なツールによって、デジタル病理は診断プロセスの改善とスピードアップ、ヒューマンエラーの低減、レポートのステップの合理化に役立つ。
本稿では,新たにRBC画像データセットを報告し,RBC画像のセグメンテーションと分類のための2段階のディープラーニングフレームワークを提案する。
データセットは8つの異なるクラスを含む100K以上のRBCの非常に多様なデータセットである。
このデータセットは、公表されているどの血液病理学データセットよりもかなり大きく、2人の血液病理学者が独立してRBC細胞セグメンテーション用のマスクを作成した。
その後、提案フレームワークでは、まず、自動RBC画像分割を実現するためにU-Netモデルを訓練した。
第2に、5X2クロスバリデーションスキームを用いたトランスファーラーニング手法を用いて、RBC画像を8つのクラスのうちの1つに分類するために、効率的なNetB0モデルを訓練した。
98.03%のIoUと96.5%の平均分類精度がテストセットで達成された。
さらに,いくつかの著名なCNNモデルと比較実験を行った。
これらの比較は、性能と計算コストのバランスのよいモデルが優れていることを示す。
関連論文リスト
- Comparative Analysis and Ensemble Enhancement of Leading CNN Architectures for Breast Cancer Classification [0.0]
本研究は,病理組織像を用いた乳癌分類への新規かつ正確なアプローチを提案する。
さまざまな画像データセット間で、主要な畳み込みニューラルネットワーク(CNN)モデルを体系的に比較する。
そこで本研究では,スタンドアロンCNNモデルにおいて,例外的分類精度を実現するために必要な設定について検討した。
論文 参考訳(メタデータ) (2024-10-04T11:31:43Z) - Histopathological Image Classification with Cell Morphology Aware Deep Neural Networks [11.749248917866915]
本稿では,細胞形態を学習し,多数のがんタイプを同定するために事前訓練した新しいDeepCMorphモデルを提案する。
7175例の8736例の診断スライドから抽出した270K以上の組織パッチからなるPan-Cancer TCGAデータセット上で,本モジュールを事前訓練した。
提案手法は, 82%以上の精度で32種類の癌を検出でき, 従来提案されていたすべてのソリューションを4%以上上回る性能を示した。
論文 参考訳(メタデータ) (2024-07-11T16:03:59Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - Semantic Segmentation of Anaemic RBCs Using Multilevel Deep
Convolutional Encoder-Decoder Network [2.5398817423053037]
赤血球のセグメンテーションのための畳み込みニューラルネットワーク(CNN)モデルを提案する。
提案モデルでは,1つの層から抽出した画素レベルの意味情報を保存し,次の層に渡して関連する特徴を選択する。
この現象は、形態学的解析とともに、健康および貧血-RBC元素のピクセルレベルを正確にカウントするのに役立つ。
論文 参考訳(メタデータ) (2022-02-09T17:31:50Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
我々は、顕微鏡的末梢血細胞画像データセットに基づいて、27の人気の深層畳み込みニューラルネットワークアーキテクチャをベンチマークした。
血液細胞分類のためのImageNetデータセットに事前トレーニングされた最先端画像分類モデルを微調整する。
論文 参考訳(メタデータ) (2021-10-18T17:56:07Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。