論文の概要: First Experiences with the Identification of People at Risk for Diabetes in Argentina using Machine Learning Techniques
- arxiv url: http://arxiv.org/abs/2403.18631v2
- Date: Fri, 28 Jun 2024 22:21:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 14:39:26.709495
- Title: First Experiences with the Identification of People at Risk for Diabetes in Argentina using Machine Learning Techniques
- Title(参考訳): アルゼンチンにおける糖尿病リスク人物の識別に機械学習を用いた最初の経験
- Authors: Enzo Rucci, Gonzalo Tittarelli, Franco Ronchetti, Jorge F. Elgart, Laura Lanzarini, Juan José Gagliardino,
- Abstract要約: 本稿では,アルゼンチンにおけるT2DとPDのリスクのある人を特定するための予測モデルの開発と評価について述べる。
その結果,これらのモデルを用いた2つのデータセットに対して,非常に良好な性能が得られた。
- 参考スコア(独自算出の注目度): 0.27488316163114823
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Detecting Type 2 Diabetes (T2D) and Prediabetes (PD) is a real challenge for medicine due to the absence of pathogenic symptoms and the lack of known associated risk factors. Even though some proposals for machine learning models enable the identification of people at risk, the nature of the condition makes it so that a model suitable for one population may not necessarily be suitable for another. In this article, the development and assessment of predictive models to identify people at risk for T2D and PD specifically in Argentina are discussed. First, the database was thoroughly preprocessed and three specific datasets were generated considering a compromise between the number of records and the amount of available variables. After applying 5 different classification models, the results obtained show that a very good performance was observed for two datasets with some of these models. In particular, RF, DT, and ANN demonstrated great classification power, with good values for the metrics under consideration. Given the lack of this type of tool in Argentina, this work represents the first step towards the development of more sophisticated models.
- Abstract(参考訳): 2型糖尿病(T2D)とプレ糖尿病(PD)の検出は、病原性症状の欠如と既知の危険因子の欠如により、医学における真の課題である。
機械学習モデルのいくつかの提案は、リスクのある人々の識別を可能にするが、その状態の性質は、ある集団に適したモデルが必ずしも別の集団に適しているとは限らないようにしている。
本稿では,アルゼンチンにおけるT2DとPDのリスクのある人を特定するための予測モデルの開発と評価について論じる。
まず、データベースは徹底的に前処理され、3つの特定のデータセットが生成される。
5つの異なる分類モデルを適用した結果、これらのモデルを用いて2つのデータセットに対して非常に優れた性能が得られた。
特に、RF、DT、ANNは大きな分類能力を示し、検討中の指標に対して良い値を示した。
アルゼンチンにこの種のツールがないことを考えると、この研究はより洗練されたモデルの開発に向けた第一歩である。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
プルーニングは、ディープニューラルネットワークを圧縮し、全体的なパフォーマンスに大きな影響を及ぼすことなく、メモリ使用量と推論時間を短縮する強力なテクニックとして登場した。
この研究は、プルーニングがモデル行動に与える影響を理解するための第一歩である。
論文 参考訳(メタデータ) (2023-08-17T20:40:30Z) - Diagnosis Uncertain Models For Medical Risk Prediction [80.07192791931533]
本研究は, 患者の診断にはアクセスできない, バイタルサイン, 検査値, 既往歴にアクセス可能な患者リスクモデルについて考察する。
このようなすべての原因のリスクモデルが、診断全体にわたって良い一般化を持つが、予測可能な障害モードを持つことが示される。
患者診断の不確実性から生じるリスク予測の不確実性を明示的にモデル化し,この問題に対する対策を提案する。
論文 参考訳(メタデータ) (2023-06-29T23:36:04Z) - Artificial Intelligence-Based Methods for Precision Medicine: Diabetes
Risk Prediction [0.3425341633647624]
このスクーピングレビューは、T2DMリスク予測のためのAIベースのモデルに関する既存の文献を分析する。
従来の機械学習モデルは、ディープラーニングモデルよりも一般的だった。
単調モデルとマルチモーダルモデルの両方が有望な性能を示し、後者は前者を上回った。
論文 参考訳(メタデータ) (2023-05-24T14:45:54Z) - SACDNet: Towards Early Type 2 Diabetes Prediction with Uncertainty for
Electronic Health Records [0.951828574518325]
本研究では,多頭部自己注意層と高密度層を用いた早期T2DM予測のためのニューラルネットワークアーキテクチャを提案する。
提案手法は、SACDNet(Self-Attention for Comorbid Disease Net)と呼ばれ、89.3%の精度とF1スコア89.1%の精度を実現している。
T2DM予測データセットも,糖尿病4,124例と非糖尿病181,767例からなる実世界の電子健康記録(EHR)データに基づいて構築されている。
論文 参考訳(メタデータ) (2023-01-12T07:14:47Z) - SynthA1c: Towards Clinically Interpretable Patient Representations for
Diabetes Risk Stratification [0.5551483435671848]
2型糖尿病(T2DM)の早期診断は、タイムリーな治療介入とライフスタイルの変更を可能にするために重要である。
画像由来の表現型と身体検査データを組み合わせて糖尿病リスクを正確に予測できることを示す。
論文 参考訳(メタデータ) (2022-09-20T23:39:52Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Enhancing the Interpretability of Deep Models in Heathcare Through
Attention: Application to Glucose Forecasting for Diabetic People [4.692400531340393]
我々は,タイプ2 IDIABとタイプ1 OhioT1DMデータセットのRETAINモデルを評価する。
我々は、RETAINモデルが精度と解釈可能性の間に非常に良い妥協をもたらすことを示した。
論文 参考訳(メタデータ) (2020-09-08T13:27:52Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - GLYFE: Review and Benchmark of Personalized Glucose Predictive Models in
Type-1 Diabetes [4.17510581764131]
GLYFEは機械学習に基づくグルコース予測モデルのベンチマークである。
ブドウ糖沈降の文献から得られた9つの異なるモデルの結果を報告する。
論文 参考訳(メタデータ) (2020-06-29T11:34:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。