論文の概要: Light-cone feature selection for quantum machine learning
- arxiv url: http://arxiv.org/abs/2403.18733v1
- Date: Wed, 27 Mar 2024 16:22:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:09:33.690060
- Title: Light-cone feature selection for quantum machine learning
- Title(参考訳): 量子機械学習のための光コーンの特徴選択
- Authors: Yudai Suzuki, Rei Sakuma, Hideaki Kawaguchi,
- Abstract要約: 本稿では,量子機械学習に着目した特徴選択手法を提案する。
我々のスキームは、量子モデルの光錐(すなわち部分空間)を特徴として扱い、対応する局所量子カーネルのトレーニングを通じて関連するものを選択する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature selection plays an essential role in improving the predictive performance and interpretability of trained models in classical machine learning. On the other hand, the usability of conventional feature selection could be limited for quantum machine learning tasks; the technique might not provide a clear interpretation on embedding quantum circuits for classical data tasks and, more importantly, is not applicable to quantum data tasks. In this work, we propose a feature selection method with a specific focus on quantum machine learning. Our scheme treats the light-cones (i.e., subspace) of quantum models as features and then select relevant ones through training of the corresponding local quantum kernels. We numerically demonstrate its versatility for four different applications using toy tasks: (1) feature selection of classical inputs, (2) circuit architecture search for data embedding, (3) compression of quantum machine learning models and (4) subspace selection for quantum data. The proposed framework paves the way towards applications of quantum machine learning to practical tasks. Also, this technique could be used to practically test if the quantum machine learning tasks really need quantumness, while it is beyond the scope of this work.
- Abstract(参考訳): 特徴選択は、古典的な機械学習において訓練されたモデルの予測性能と解釈可能性を改善する上で重要な役割を果たす。
一方、従来の特徴選択のユーザビリティは量子機械学習タスクに限られる可能性があり、この技術は古典的なデータタスクに量子回路を埋め込むための明確な解釈を提供しておらず、より重要なのは量子データタスクには適用できないことである。
本研究では,量子機械学習に着目した特徴選択手法を提案する。
我々のスキームは、量子モデルの光錐(すなわち部分空間)を特徴として扱い、対応する局所量子カーネルのトレーニングを通じて関連するものを選択する。
1)古典的な入力の特徴選択,(2)データ埋め込みのための回路アーキテクチャ探索,(3)量子機械学習モデルの圧縮,(4)量子データのための部分空間選択,である。
提案するフレームワークは、量子機械学習の実践的なタスクへの応用への道を開くものだ。
また、このテクニックは、量子機械学習タスクが本当に量子性を必要としているかどうかを実際にテストするために使用することができる。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
量子プロセッサは、考慮された基本的な分類タスクを正しく解くことができることを示す。
量子プロセッサの能力が向上するにつれ、機械学習の有用なツールになり得る。
論文 参考訳(メタデータ) (2024-06-17T18:20:51Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
変分量子アルゴリズム(VQA)を用いた量子機械学習は、ノイズのある中間スケール量子(NISQ)時代の実用的なアルゴリズムとして積極的に研究されている。
近年の研究では、古典的なデータを量子回路に繰り返しエンコードするデータ再アップロードが、表現力のある量子機械学習モデルを得るために必要であることが示されている。
我々は、Kerrnon Parametric Hilberts (KPO) を別の有望な量子コンピューティングデバイスとして用いて量子機械学習を提案する。
論文 参考訳(メタデータ) (2023-05-01T07:01:45Z) - VQE-generated Quantum Circuit Dataset for Machine Learning [0.5658123802733283]
変動量子固有解法により最適化された量子回路のデータセットを提供する。
このデータセットは量子的手法で容易に学習できることが示される。
論文 参考訳(メタデータ) (2023-02-20T04:08:44Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
カーネル法は、より高次元(おそらく無限)な特徴空間における点間の類似性の概念に依存している。
最適な量子埋め込みを生成するために,変分量子カーネルとタスク固有量子量子学習について論じる。
論文 参考訳(メタデータ) (2022-11-08T18:36:25Z) - Machine learning applications for noisy intermediate-scale quantum
computers [0.0]
NISQコンピュータに適した3つの量子機械学習アプリケーションを開発し研究する。
これらのアルゴリズムは本質的に変動し、基礎となる量子機械学習モデルとしてパラメータ化量子回路(PQC)を使用する。
近似量子クローニングの領域において,データを自然界において量子化する変分アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-19T09:26:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Machine Learning using Gaussian Processes with Performant
Quantum Kernels [0.0]
量子コンピュータを用いて1次元および多次元回帰の機械学習タスクを実行する。
我々は、シミュレーションとハードウェアの両方において、量子デバイスが、古典的なインスピレーションよりも少なくとも何倍も優れた機械学習タスクを実行できることを実証した。
論文 参考訳(メタデータ) (2020-04-23T16:09:14Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。