Towards Sustainable SecureML: Quantifying Carbon Footprint of Adversarial Machine Learning
- URL: http://arxiv.org/abs/2403.19009v1
- Date: Wed, 27 Mar 2024 21:02:15 GMT
- Title: Towards Sustainable SecureML: Quantifying Carbon Footprint of Adversarial Machine Learning
- Authors: Syed Mhamudul Hasan, Abdur R. Shahid, Ahmed Imteaj,
- Abstract summary: We pioneer the first investigation into adversarial ML's carbon footprint.
We introduce the Robustness Carbon Trade-off Index (RCTI)
This novel metric, inspired by economic elasticity principles, captures the sensitivity of carbon emissions to changes in adversarial robustness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread adoption of machine learning (ML) across various industries has raised sustainability concerns due to its substantial energy usage and carbon emissions. This issue becomes more pressing in adversarial ML, which focuses on enhancing model security against different network-based attacks. Implementing defenses in ML systems often necessitates additional computational resources and network security measures, exacerbating their environmental impacts. In this paper, we pioneer the first investigation into adversarial ML's carbon footprint, providing empirical evidence connecting greater model robustness to higher emissions. Addressing the critical need to quantify this trade-off, we introduce the Robustness Carbon Trade-off Index (RCTI). This novel metric, inspired by economic elasticity principles, captures the sensitivity of carbon emissions to changes in adversarial robustness. We demonstrate the RCTI through an experiment involving evasion attacks, analyzing the interplay between robustness against attacks, performance, and carbon emissions.
Related papers
- Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
We introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL)
Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms.
It constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion.
arXiv Detail & Related papers (2024-07-17T09:45:27Z) - Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility.
We propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL)
Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions.
arXiv Detail & Related papers (2024-06-12T05:08:51Z) - Leakage-Resilient and Carbon-Neutral Aggregation Featuring the Federated AI-enabled Critical Infrastructure [42.688679691088204]
We propose a leakage-resilient, communication-efficient, and carbon-neutral approach for ACI networks.
We show that CDPA can reduce communication cost by half while preserving model utility.
We highlight existing benchmarks that generate 2.6x to over 100x more carbon emissions than CDPA.
arXiv Detail & Related papers (2024-05-24T06:35:09Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Efficient Strategies on Supply Chain Network Optimization for Industrial Carbon Emission Reduction [0.0]
This study investigates the efficient strategies for supply chain network optimization, specifically aimed at reducing industrial carbon emissions.
We introduce Adaptive Carbon Emissions Indexing (ACEI), utilizing real-time carbon emissions data to drive instantaneous adjustments in supply chain operations.
arXiv Detail & Related papers (2024-04-17T14:53:55Z) - AI-driven E-Liability Knowledge Graphs: A Comprehensive Framework for
Supply Chain Carbon Accounting and Emissions Liability Management [0.0]
We introduce the E-liability carbon accounting methodology and Emissions Liability Management (ELM) originally proposed by Kaplan and Ramanna.
We introduce a novel data-driven integrative framework that leverages AI and computation - the E-Liability Knowledge Graph framework.
arXiv Detail & Related papers (2023-11-26T23:09:36Z) - Efficiency is Not Enough: A Critical Perspective of Environmentally
Sustainable AI [9.918392710009774]
We argue that efficiency alone is not enough to make ML as a technology environmentally sustainable.
We present and argue for systems thinking as a viable path towards improving the environmental sustainability of ML holistically.
arXiv Detail & Related papers (2023-09-05T09:07:24Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Is TinyML Sustainable? Assessing the Environmental Impacts of Machine
Learning on Microcontrollers [11.038060631389273]
Tiny Machine Learning (TinyML) has the opportunity to help address environmental challenges through sustainable computing practices.
This article discusses the potential of these TinyML applications to address critical sustainability challenges, as well as the environmental footprint of this emerging technology.
We find that TinyML systems present opportunities to offset their carbon emissions by enabling applications that reduce the emissions of other sectors.
arXiv Detail & Related papers (2023-01-27T18:23:10Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.