論文の概要: MFORT-QA: Multi-hop Few-shot Open Rich Table Question Answering
- arxiv url: http://arxiv.org/abs/2403.19116v1
- Date: Thu, 28 Mar 2024 03:14:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 17:22:41.286515
- Title: MFORT-QA: Multi-hop Few-shot Open Rich Table Question Answering
- Title(参考訳): MFORT-QA:マルチホップFew-shot Open Rich Table Question Answering
- Authors: Che Guan, Mengyu Huang, Peng Zhang,
- Abstract要約: 今日の急成長する業界では、専門家は大量の文書を要約し、毎日重要な情報を抽出するという課題に直面している。
この課題に対処するために、テーブル質問回答(QA)のアプローチを開発し、関連する情報を抽出した。
近年のLarge Language Models (LLMs) の進歩により,プロンプトを用いて表データから情報を取り出す新たな可能性が高まっている。
- 参考スコア(独自算出の注目度): 3.1651118728570635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In today's fast-paced industry, professionals face the challenge of summarizing a large number of documents and extracting vital information from them on a daily basis. These metrics are frequently hidden away in tables and/or their nested hyperlinks. To address this challenge, the approach of Table Question Answering (QA) has been developed to extract the relevant information. However, traditional Table QA training tasks that provide a table and an answer(s) from a gold cell coordinate(s) for a question may not always ensure extracting the accurate answer(s). Recent advancements in Large Language Models (LLMs) have opened up new possibilities for extracting information from tabular data using prompts. In this paper, we introduce the Multi-hop Few-shot Open Rich Table QA (MFORT-QA) approach, which consists of two major steps. The first step involves Few-Shot Learning (FSL), where relevant tables and associated contexts of hyperlinks are retrieved based on a given question. The retrieved content is then used to construct few-shot prompts as inputs to an LLM, such as ChatGPT. To tackle the challenge of answering complex questions, the second step leverages Chain-of-thought (CoT) prompting to decompose the complex question into a sequential chain of questions and reasoning thoughts in a multi-hop manner. Retrieval-Augmented Generation (RAG) enhances this process by retrieving relevant tables and contexts of hyperlinks that are relevant to the resulting reasoning thoughts and questions. These additional contexts are then used to supplement the prompt used in the first step, resulting in more accurate answers from an LLM. Empirical results from OTT-QA demonstrate that our abstractive QA approach significantly improves the accuracy of extractive Table QA methods.
- Abstract(参考訳): 今日の急成長する業界では、専門家は大量の文書を要約し、毎日重要な情報を抽出するという課題に直面している。
これらのメトリクスは、しばしばテーブルやネストしたハイパーリンクに隠されます。
この課題に対処するために、テーブル質問回答(QA)のアプローチを開発し、関連する情報を抽出した。
しかし、質問に対するゴールドセル座標からテーブルと回答を提供する従来のテーブルQAトレーニングタスクは、必ずしも正確な回答を抽出することを保証するとは限らない。
近年のLarge Language Models (LLMs) の進歩により,プロンプトを用いて表データから情報を取り出す新たな可能性が高まっている。
本稿では,MFORT-QA(Multi-hop Few-shot Open Rich Table QA)アプローチを紹介する。
最初のステップはFew-Shot Learning (FSL)で、関連するテーブルとハイパーリンクの関連コンテキストが与えられた質問に基づいて検索される。
検索されたコンテンツは、ChatGPTなどのLLMへの入力として、数発のプロンプトを構築するために使用される。
複雑な質問に答える課題に取り組むために、第2のステップは、複雑な質問を逐次的な質問の連鎖に分解し、マルチホップで思考を推論するように促す、Chain-of-Thought(CoT)を活用する。
Retrieval-Augmented Generation (RAG)は、結果の推論思考や疑問に関連するハイパーリンクの関連テーブルとコンテキストを取得することで、このプロセスを強化する。
これらの追加の文脈は、最初のステップで使われるプロンプトを補うために使用され、その結果 LLM のより正確な答えが得られる。
OTT-QAによる実験結果から,抽出テーブルQA法の精度が大幅に向上することが示唆された。
関連論文リスト
- Seek and Solve Reasoning for Table Question Answering [49.006950918895306]
本稿では,大規模言語モデルの推論機能を活用して,表に基づく質問応答(TQA)の性能を向上させる。
人間がTQAタスクを解く方法に触発されて、私たちはLLMにまず関連する情報を求め、質問に答えるように指示するSeek-and-seekパイプラインを提案します。
本稿では,パイプラインから抽出した単一段TQA分解プロンプトについて述べる。
論文 参考訳(メタデータ) (2024-09-09T02:41:00Z) - TTQA-RS- A break-down prompting approach for Multi-hop Table-Text Question Answering with Reasoning and Summarization [3.531533402602335]
マルチホップテーブル-テキストQAは、テーブルとテキストの間に複数のホップを必要とする。
我々のモデルはテーブルテキスト情報検索に拡張された検索器を使用する。
我々の実験は、素早いアプローチの可能性を実証している。
論文 参考訳(メタデータ) (2024-06-20T20:55:38Z) - HOLMES: Hyper-Relational Knowledge Graphs for Multi-hop Question Answering using LLMs [9.559336828884808]
大規模言語モデル(LLM)は、単純な(シングルホップ)質問に答えるには適しています。
質問の複雑さが増すにつれて、LLMの性能は低下する。
最近の手法では、構造化知識三重項を原文に組み込むことで、この負担を軽減しようとしている。
本稿では,知識グラフ(KG)を用いてコンテキスト認識し,クエリ関連情報を含むように蒸留する手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T05:22:49Z) - SEMQA: Semi-Extractive Multi-Source Question Answering [94.04430035121136]
本稿では,複数ソースを半抽出的に要約することで,複数の質問に答える新しいQAタスクを提案する。
この種の最初のデータセットであるQuoteSumを作成し、自然および生成された質問に対する人間による半抽出的な回答を提示する。
論文 参考訳(メタデータ) (2023-11-08T18:46:32Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Multifaceted Improvements for Conversational Open-Domain Question
Answering [54.913313912927045]
対話型オープンドメイン質問回答(MICQA)のための多面的改善フレームワークを提案する。
第一に、提案したKL分割に基づく正規化は、検索と解答のためのより良い質問理解をもたらすことができる。
第二に、追加されたポストランカモジュールは、より関連性の高いパスをトップにプッシュし、2アスペクトの制約で読者に選択できる。
第3に、十分に設計されたカリキュラム学習戦略は、訓練と推論の黄金の通路設定のギャップを効果的に狭め、黄金の通路支援なしで真の答えを見つけることを奨励する。
論文 参考訳(メタデータ) (2022-04-01T07:54:27Z) - FeTaQA: Free-form Table Question Answering [33.018256483762386]
FeTaQAは10Kのウィキペディアベースのテーブル、質問、自由形式の回答、テーブルセルペアをサポートする新しいデータセットである。
FeTaQAは、構造化された知識ソースから複数の不連続な事実の検索、推論、および統合後に自由形式のテキスト回答を生成する必要があるため、より困難なテーブル質問回答設定を提供する。
論文 参考訳(メタデータ) (2021-04-01T09:59:40Z) - Open Question Answering over Tables and Text [55.8412170633547]
オープンな質問応答(QA)では、質問に対する回答は、質問に対する回答を含む可能性のある文書を検索して分析することによって生成される。
ほとんどのオープンQAシステムは、構造化されていないテキストからのみ情報を取得することを検討している。
我々は,このタスクの性能を評価するために,新しい大規模データセット Open Table-and-Text Question Answering (OTT-QA) を提案する。
論文 参考訳(メタデータ) (2020-10-20T16:48:14Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
オープンドメインの問に答える統合QAフレームワークを提案する。
提案手法は,シングルホップおよびマルチホップのオープンドメインQAデータセットにおいて,最先端技術に匹敵する性能を継続的に達成する。
論文 参考訳(メタデータ) (2020-09-16T04:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。