Artificial Intelligence (AI) Based Prediction of Mortality, for COVID-19 Patients
- URL: http://arxiv.org/abs/2403.19355v1
- Date: Thu, 28 Mar 2024 12:11:29 GMT
- Title: Artificial Intelligence (AI) Based Prediction of Mortality, for COVID-19 Patients
- Authors: Mahbubunnabi Tamala, Mohammad Marufur Rahmanb, Maryam Alhasimc, Mobarak Al Mulhimd, Mohamed Derichee,
- Abstract summary: For severely affected COVID-19 patients, it is crucial to identify high-risk patients and predict survival and need for intensive care (ICU)
This study investigated the performances of nine machine and deep learning algorithms in combination with two widely used feature selection methods.
LSTM performed the best in predicting last status and ICU requirement with 90%, 92%, 86% and 95% accuracy, sensitivity, specificity, and AUC respectively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For severely affected COVID-19 patients, it is crucial to identify high-risk patients and predict survival and need for intensive care (ICU). Most of the proposed models are not well reported making them less reproducible and prone to high risk of bias particularly in presence of imbalance data/class. In this study, the performances of nine machine and deep learning algorithms in combination with two widely used feature selection methods were investigated to predict last status representing mortality, ICU requirement, and ventilation days. Fivefold cross-validation was used for training and validation purposes. To minimize bias, the training and testing sets were split maintaining similar distributions. Only 10 out of 122 features were found to be useful in prediction modelling with Acute kidney injury during hospitalization feature being the most important one. The algorithms performances depend on feature numbers and data pre-processing techniques. LSTM performs the best in predicting last status and ICU requirement with 90%, 92%, 86% and 95% accuracy, sensitivity, specificity, and AUC respectively. DNN performs the best in predicting Ventilation days with 88% accuracy. Considering all the factors and limitations including absence of exact time point of clinical onset, LSTM with carefully selected features can accurately predict last status and ICU requirement. DNN performs the best in predicting Ventilation days. Appropriate machine learning algorithm with carefully selected features and balance data can accurately predict mortality, ICU requirement and ventilation support. Such model can be very useful in emergency and pandemic where prompt and precise
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - MedLens: Improve Mortality Prediction Via Medical Signs Selecting and
Regression [4.43322868663347]
Data-quality problem of original clinical signs is less discussed in the literature.
We designed MEDLENS, with an automatic vital medical signs selection approach via statistics and a flexible approach for high missing rate time series.
It achieves a very high accuracy performance of 0.96 AUC-ROC and 0.81 AUC-PR, which exceeds the previous benchmark.
arXiv Detail & Related papers (2023-05-19T15:28:02Z) - Using Deep Learning-based Features Extracted from CT scans to Predict
Outcomes in COVID-19 Patients [0.4841303207359715]
A novel methodology is proposed by combining multi-modal features, extracted from Computed Tomography (CT) scans and Electronic Health Record (EHR) data.
Deep learning models are leveraged to extract quantitative features from CT scans.
These features combined with those directly read from the EHR database are fed into machine learning models to eventually output the probabilities of patient outcomes.
arXiv Detail & Related papers (2022-05-10T16:22:16Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
An efficient survival classification model is presented in a comprehensive manner.
A synthetic dataset is generated by imputing the missing values, transforming the data using dummy variable encoding, and compressing the dataset from 59 features to the 11 most correlated features using Chi-squared feature selection.
Several supervised ML methods were trained in this regard, like Decision Tree, Random Forest, Logistic Regression, K-Nearest Neighbors, Gradient Boosting, Ada Boost, and XG Boost.
arXiv Detail & Related papers (2022-01-22T08:01:22Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
We propose an end-to-end deep learning solution using a convolutional neural network (CNN)
Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively.
arXiv Detail & Related papers (2021-08-17T05:49:43Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.