論文の概要: Brain-Shift: Unsupervised Pseudo-Healthy Brain Synthesis for Novel Biomarker Extraction in Chronic Subdural Hematoma
- arxiv url: http://arxiv.org/abs/2403.19415v1
- Date: Thu, 28 Mar 2024 13:39:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 16:14:04.130844
- Title: Brain-Shift: Unsupervised Pseudo-Healthy Brain Synthesis for Novel Biomarker Extraction in Chronic Subdural Hematoma
- Title(参考訳): 脳移行:慢性硬膜下血腫における新しいバイオマーカー抽出のための教師なし擬似健康脳合成法
- Authors: Baris Imre, Elina Thibeau-Sutre, Jorieke Reimer, Kuan Kho, Jelmer M. Wolterink,
- Abstract要約: 慢性硬膜下血腫(cSDH)は、脳と硬膜間血の蓄積を特徴とする一般的な神経疾患である。
伝統的に、理想的な矢状面からの専門家によって手動で測定された正中線シフトと、ヘマトマ体積が、cSDHの定量化の主要な指標となっている。
そこで本研究では,脳の変形場を生成するために,解剖学を意識した非教師付き擬似健康合成法を提案する。
- 参考スコア(独自算出の注目度): 2.1227797471108745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chronic subdural hematoma (cSDH) is a common neurological condition characterized by the accumulation of blood between the brain and the dura mater. This accumulation of blood can exert pressure on the brain, potentially leading to fatal outcomes. Treatment options for cSDH are limited to invasive surgery or non-invasive management. Traditionally, the midline shift, hand-measured by experts from an ideal sagittal plane, and the hematoma volume have been the primary metrics for quantifying and analyzing cSDH. However, these approaches do not quantify the local 3D brain deformation caused by cSDH. We propose a novel method using anatomy-aware unsupervised diffeomorphic pseudo-healthy synthesis to generate brain deformation fields. The deformation fields derived from this process are utilized to extract biomarkers that quantify the shift in the brain due to cSDH. We use CT scans of 121 patients for training and validation of our method and find that our metrics allow the identification of patients who require surgery. Our results indicate that automatically obtained brain deformation fields might contain prognostic value for personalized cSDH treatment. Our implementation is available on: github.com/Barisimre/brain-morphing
- Abstract(参考訳): 慢性硬膜下血腫(cSDH)は、脳と硬膜間血の蓄積を特徴とする一般的な神経疾患である。
この血液の蓄積は脳に圧力を与え、致命的な結果をもたらす可能性がある。
cSDHの治療オプションは、侵襲的手術または非侵襲的管理に限られる。
伝統的に、理想的な矢状面の専門家によって手動で測定された正中線シフトと、ヘマトマ体積が、cSDHの定量化と分析の主要な指標となっている。
しかし、これらの手法はcSDHによる局所的な3次元脳の変形を定量化しない。
そこで本研究では,脳の変形場を生成するために,解剖学を意識した非教師付き擬似健康合成法を提案する。
この過程から導かれる変形場を利用して、cSDHによる脳のシフトを定量化するバイオマーカーを抽出する。
方法の訓練と検証には,121例のCTスキャンを用い,手術を要した患者の識別に有効であることが確認された。
以上の結果から, 自動的に得られる脳の変形場には, パーソナライズされたcSDH治療のための予後値が含まれている可能性が示唆された。
実装は、github.com/Barisimre/brain-morphingで利用可能です。
関連論文リスト
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - On Enhancing Brain Tumor Segmentation Across Diverse Populations with Convolutional Neural Networks [0.9304666952022026]
本研究は、BraTS-GoATチャレンジの一環として、脳腫瘍セグメンテーション法を提案する。
課題は、成人、小児科、サハラ以南のアフリカなどの様々な集団から脳MRIスキャンで腫瘍を抽出することである。
実験の結果, 平均DSCは85.54%, HD95は27.88。
論文 参考訳(メタデータ) (2024-05-05T08:55:00Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Predicting isocitrate dehydrogenase mutationstatus in glioma using
structural brain networksand graph neural networks [6.67232502899311]
Isocitrate dehydrogenase (IDH)遺伝子変異はグリオーマの診断と予後に重要な価値をもたらす。
機械学習とディープラーニングモデルは、IDH変異状態を予測する上で適切なパフォーマンスを示す。
本稿では,患者の脳の構造的ネットワークに基づくグラフニューラルネットワーク(GNN)を用いたIDH変異の予測手法を提案する。
論文 参考訳(メタデータ) (2021-09-04T12:19:33Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
3D MRIボリュームからの脳腫瘍の手動分割は、時間のかかる作業です。
私たちのモデルであるQuickTumorNetは、高速で信頼性があり、正確な脳腫瘍セグメンテーションを示しました。
論文 参考訳(メタデータ) (2020-12-22T23:16:43Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
そこで我々は,腫瘍周辺で最小の境界ボックスを見つけるために,軽量計算量で高速かつ自動化された手法を提案する。
この領域は、サブリージョン腫瘍セグメンテーションのトレーニングネットワークにおける前処理ステップとして使用できる。
提案手法は BraTS 2015 データセット上で評価され,得られた平均 DICE スコアは 0.73 である。
論文 参考訳(メタデータ) (2020-02-26T14:10:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。