論文の概要: Non-Exchangeable Conformal Risk Control
- arxiv url: http://arxiv.org/abs/2310.01262v2
- Date: Fri, 26 Jan 2024 10:47:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-29 17:45:30.084432
- Title: Non-Exchangeable Conformal Risk Control
- Title(参考訳): 非交換型コンフォーマルリスク制御
- Authors: Ant\'onio Farinhas, Chrysoula Zerva, Dennis Ulmer, Andr\'e F. T.
Martins
- Abstract要約: 分割共形予測は、公式に保証された不確実性セットや間隔を提供する能力によって、最近大きな関心を集めている。
本研究では,データ交換不能時のモノトーン損失関数の期待値を制御できる非交換型共形リスク制御を提案する。
私たちのフレームワークはフレキシブルで、仮定はごくわずかで、所定のテスト例に対する関連性に基づいてデータを重み付けできます。
- 参考スコア(独自算出の注目度): 12.381447108228635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Split conformal prediction has recently sparked great interest due to its
ability to provide formally guaranteed uncertainty sets or intervals for
predictions made by black-box neural models, ensuring a predefined probability
of containing the actual ground truth. While the original formulation assumes
data exchangeability, some extensions handle non-exchangeable data, which is
often the case in many real-world scenarios. In parallel, some progress has
been made in conformal methods that provide statistical guarantees for a
broader range of objectives, such as bounding the best $F_1$-score or
minimizing the false negative rate in expectation. In this paper, we leverage
and extend these two lines of work by proposing non-exchangeable conformal risk
control, which allows controlling the expected value of any monotone loss
function when the data is not exchangeable. Our framework is flexible, makes
very few assumptions, and allows weighting the data based on its relevance for
a given test example; a careful choice of weights may result on tighter bounds,
making our framework useful in the presence of change points, time series, or
other forms of distribution drift. Experiments with both synthetic and real
world data show the usefulness of our method.
- Abstract(参考訳): 分割共形予測は、ブラックボックスニューラルモデルによる予測に対して、公式に保証された不確実性セットや間隔を提供することで、実際の基底真理を包含する事前定義された確率を確保するために、最近大きな関心を集めている。
オリジナルの定式化はデータ交換可能性を想定しているが、いくつかの拡張は交換不能なデータを扱う。
平行して、最高の$F_1$-scoreのバウンドや期待値の偽陰率の最小化など、より幅広い目的に対する統計的保証を提供する共形法が進歩している。
本稿では,データ交換不能時の単調損失関数の期待値を制御できる非交換性共形リスク制御を提案することにより,これら2つの作業線を活用・拡張する。
私たちのフレームワークは柔軟性があり、仮定が極めて少なく、所定のテスト例の妥当性に基づいてデータを重み付けすることが可能です。
合成データと実世界データの両方を用いた実験により,本手法の有用性が示された。
関連論文リスト
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
しきい値とトレードオフパラメータが適応的に選択された場合、リスクの有効な制御を可能にする手法を開発する。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
論文 参考訳(メタデータ) (2024-03-28T17:28:06Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
コンフォーマル予測(CP)は不確実性定量化のための頑健な枠組みである。
非交換性に対処するための既存のアプローチは、最も単純な例を超えて計算不可能なメソッドにつながる。
この研究は、比較的一般的な非交換可能なデータ分布に対して証明可能な信頼セットを生成する、CPに新しい効率的なアプローチを導入する。
論文 参考訳(メタデータ) (2023-12-25T20:02:51Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - The Decaying Missing-at-Random Framework: Doubly Robust Causal Inference
with Partially Labeled Data [10.021381302215062]
現実のシナリオでは、データ収集の制限によって部分的にラベル付けされたデータセットが生成されることが多く、信頼性の高い因果推論の描画が困難になる。
半パラメトリック(SS)や欠落したデータ文学における従来のアプローチは、これらの複雑さを適切に扱えないため、偏りのある見積もりにつながる可能性がある。
このフレームワークは、高次元設定における欠落した結果に対処し、選択バイアスを考慮に入れます。
論文 参考訳(メタデータ) (2023-05-22T07:37:12Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
分割共形予測は、最小分布自由仮定の下で有限サンプル保証を得るための有望な道を表す。
1940年代に開発された分割共形予測と古典的寛容予測との関連性を強調した。
論文 参考訳(メタデータ) (2022-10-26T14:12:24Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
本稿では,適応アンサンブルバッチ多出力多出力共形量子化回帰(AEnbMIMOCQR)と呼ばれる新しいモデル非依存アルゴリズムを提案する。
これにより、予測者は、固定された特定された誤発見率に対して、分布のない方法で、複数段階の事前予測間隔を生成できる。
本手法は, 整合予測の原理に基づいているが, データの分割は不要であり, データの交換ができない場合でも, ほぼ正確なカバレッジを提供する。
論文 参考訳(メタデータ) (2022-07-28T16:40:26Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
コンフォーマルなオフ政治予測は、新しい目標ポリシーの下で、結果に対する信頼できる予測間隔を出力することができる。
理論上の有限サンプル保証は、標準的な文脈的バンディットの設定を超える追加の仮定をすることなく提供する。
論文 参考訳(メタデータ) (2022-06-09T10:39:33Z) - Selective Regression Under Fairness Criteria [30.672082160544996]
少数派集団のパフォーマンスは、カバー範囲を減らしながら低下する場合もある。
満足度基準を満たす特徴を構築できれば、そのような望ましくない行動は避けられることを示す。
論文 参考訳(メタデータ) (2021-10-28T19:05:12Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。