論文の概要: Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2403.19805v1
- Date: Thu, 28 Mar 2024 19:36:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 17:13:56.552899
- Title: Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey
- Title(参考訳): スマートコントラクトの脆弱性と緩和策:包括的調査
- Authors: Wejdene Haouari, Abdelhakim Senhaji Hafid, Marios Fokaefs,
- Abstract要約: 本稿では,開発者がセキュアなスマート技術を開発するのを支援することを目的とした,文献レビューと実験報告の併用について述べる。
頻繁な脆弱性とそれに対応する緩和ソリューションのリストを提供する。
コミュニティで最も広く使われているツールを、サンプルのスマートコントラクト上で実行し、テストすることで評価する。
- 参考スコア(独自算出の注目度): 0.6554326244334866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ethereum smart contracts are highly powerful; they are immutable and retain massive amounts of tokens. However, smart contracts keep attracting attackers to benefit from smart contract flaws and Ethereum's unexpected behaviour. Thus, methodologies and tools have been proposed to help implementing secure smart contracts and to evaluate the security of smart contracts already deployed. Most related surveys focus on tools without discussing the logic behind them; in addition, they assess the tools based on papers rather than testing the tools and collecting community feedback. Other surveys lack guidelines on how to use tools specific to smart contract functionalities. This paper presents a literature review combined with an experimental report, that aims to assist developers in developing secure smarts, with a novel emphasis on the challenges and vulnerabilities introduced by NFT fractionalization by addressing the unique risks of dividing NFT ownership into tradeable units called fractions. It provides a list of frequent vulnerabilities and corresponding mitigation solutions. In addition, it evaluates the community's most widely used tools by executing and testing them on sample smart contracts. Finally, a complete guidance on how to secure smart contracts is presented.
- Abstract(参考訳): Ethereumスマートコントラクトは非常に強力で、不変であり、大量のトークンを保持する。
しかし、スマートコントラクトは、スマートコントラクトの欠陥とEthereumの予期せぬ振る舞いの恩恵を受けるために、攻撃者を惹きつけ続けている。
このように、セキュアなスマートコントラクトの実装を支援し、すでにデプロイされているスマートコントラクトのセキュリティを評価するために、方法論とツールが提案されている。
また、ツールのテストやコミュニティからのフィードバックの収集よりも、論文に基づいてツールを評価する。
他の調査では、スマートコントラクト機能に特化したツールの使い方に関するガイドラインがない。
本論文は,NFTの所有権を取引可能な単位に分割することのユニークなリスクに対処することで,NFTの分別化による課題と脆弱性に新たな重点を置いて,開発者がセキュアなスマートな技術を開発するのを支援することを目的とした,実験報告と組み合わせた文献レビューである。
頻繁な脆弱性とそれに対応する緩和ソリューションのリストを提供する。
さらに、サンプルのスマートコントラクト上でそれらを実行し、テストすることで、コミュニティで最も広く使用されているツールを評価します。
最後に、スマートコントラクトの安全性に関する完全なガイダンスが提示される。
関連論文リスト
- Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
スマートコントラクトに対する機械学習の脆弱性検出における技術の現状を分析する。
スマートコントラクトにおける脆弱性検出の精度,スコープ,効率を高めるためのベストプラクティスについて議論する。
論文 参考訳(メタデータ) (2024-07-26T10:09:44Z) - Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
本稿では、バージョン管理されたスマートコントラクトのデータセットを収集する最初のスマートコントラクト収集ツールであるEthstractorを提案する。
収集されたデータセットは、スマートコントラクトの脆弱性の指標として、コードメトリクスの信頼性を評価するために使用される。
論文 参考訳(メタデータ) (2024-07-22T18:27:29Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
本稿では,契約設計によるオンライン学習問題において,利害関係者の経済的利益を整合させる理論的枠組みを提案する。
計画問題に対して、遠目エージェントに対する最適契約を決定するための効率的な動的プログラミングアルゴリズムを設計する。
学習問題に対して,契約の堅牢な設計から探索と搾取のバランスに至るまでの課題を解き放つために,非回帰学習アルゴリズムの汎用設計を導入する。
論文 参考訳(メタデータ) (2024-07-01T16:53:00Z) - A security framework for Ethereum smart contracts [13.430752634838539]
本稿では、スマートコントラクト分析のフレームワークであるESAFについて述べる。
スマートコントラクトの脆弱性を分析するタスクを統一し、促進することを目的としている。
一連のターゲットコントラクトに対する永続的なセキュリティ監視ツールや、古典的な脆弱性分析ツールとして使用できる。
論文 参考訳(メタデータ) (2024-02-05T22:14:21Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
2023年だけでも、そのような脆弱性は数十億ドルを超える巨額の損失をもたらした。
スマートコントラクトの脆弱性を検出し、軽減するために、さまざまなツールが開発されている。
本研究では,既存のセキュリティスキャナの有効性と,現在も継続している脆弱性とのギャップについて検討する。
論文 参考訳(メタデータ) (2023-12-27T11:26:26Z) - Formally Verifying a Real World Smart Contract [52.30656867727018]
われわれは、Solidityの最新バージョンで書かれた現実世界のスマートコントラクトを正式に検証できるツールを検索する。
本稿では,最近のSolidityで書かれた実世界のスマートコントラクトを正式に検証できるツールについて紹介する。
論文 参考訳(メタデータ) (2023-07-05T14:30:21Z) - SmartBugs 2.0: An Execution Framework for Weakness Detection in Ethereum
Smart Contracts [0.757843972001219]
スマートコントラクトは、しばしば価値ある資産を扱うブロックチェーンプログラムである。
脆弱性の特定と排除を支援するため、自動分析のためのメソッドとツールが提案されている。
We present SmartBugs 2.0, a modular execution framework for smart contract analysis。
論文 参考訳(メタデータ) (2023-06-08T09:22:25Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - Pre-deployment Analysis of Smart Contracts -- A Survey [0.27195102129095]
本稿では,スマートコントラクトの脆弱性と方法に関する文献を体系的にレビューする。
具体的には、スマートコントラクトの脆弱性とメソッドを、それらが対処するプロパティによって列挙し分類します。
異なる手法の強みに関するいくつかのパターンがこの分類プロセスを通して現れる。
論文 参考訳(メタデータ) (2023-01-15T12:36:56Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
従来のスマートコントラクトの脆弱性検出方法は、専門家の規則に大きく依存している。
最近のディープラーニングアプローチはこの問題を軽減するが、有用な専門家の知識をエンコードすることができない。
ソースコードから専門家パターンを抽出する自動ツールを開発する。
次に、深いグラフの特徴を抽出するために、コードをセマンティックグラフにキャストします。
論文 参考訳(メタデータ) (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。