論文の概要: ChemSpaceAL: An Efficient Active Learning Methodology Applied to
Protein-Specific Molecular Generation
- arxiv url: http://arxiv.org/abs/2309.05853v2
- Date: Mon, 4 Dec 2023 00:26:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 22:20:24.768100
- Title: ChemSpaceAL: An Efficient Active Learning Methodology Applied to
Protein-Specific Molecular Generation
- Title(参考訳): ChemSpaceal:タンパク質特異的分子生成に適用した効率的な能動的学習手法
- Authors: Gregory W. Kyro, Anton Morgunov, Rafael I. Brent, Victor S. Batista
- Abstract要約: 本稿では,生成したデータのサブセットのみを評価することを必要とする,計算効率のよい能動的学習手法を提案する。
FDAが承認した小分子インヒビターc-Ablキナーゼを用いたタンパク質に対するGPT分子ジェネレータの微調整による標的分子生成への本手法の適用性を実証した。
興味深いことに、このモデルは、その存在を事前に知ることなく、インヒビターに似た分子を生成することを学び、それらのうち2つを正確に再現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The incredible capabilities of generative artificial intelligence models have
inevitably led to their application in the domain of drug discovery. Within
this domain, the vastness of chemical space motivates the development of more
efficient methods for identifying regions with molecules that exhibit desired
characteristics. In this work, we present a computationally efficient active
learning methodology that requires evaluation of only a subset of the generated
data in the constructed sample space to successfully align a generative model
with respect to a specified objective. We demonstrate the applicability of this
methodology to targeted molecular generation by fine-tuning a GPT-based
molecular generator toward a protein with FDA-approved small-molecule
inhibitors, c-Abl kinase. Remarkably, the model learns to generate molecules
similar to the inhibitors without prior knowledge of their existence, and even
reproduces two of them exactly. We also show that the methodology is effective
for a protein without any commercially available small-molecule inhibitors, the
HNH domain of the CRISPR-associated protein 9 (Cas9) enzyme. We believe that
the inherent generality of this method ensures that it will remain applicable
as the exciting field of in silico molecular generation evolves. To facilitate
implementation and reproducibility, we have made all of our software available
through the open-source ChemSpaceAL Python package.
- Abstract(参考訳): 生成する人工知能モデルの驚くべき能力は、必然的に薬物発見の分野への応用に繋がった。
この領域内では、化学空間の広さは、望ましい特性を示す分子を持つ領域を同定するより効率的な方法の開発を動機付けている。
本研究では,生成したデータのサブセットのみを構築サンプル空間で評価し,特定目的に対して生成モデルに適合させる計算効率の高いアクティブラーニング手法を提案する。
FDAが承認した小分子インヒビターc-Ablキナーゼを用いたタンパク質に対するGPT分子ジェネレータの微調整による標的分子生成への本手法の適用性を実証した。
興味深いことに、このモデルは、その存在を事前に知ることなく、インヒビターに似た分子を生成することを学び、2つを正確に再現する。
また, CRISPR関連蛋白9(Cas9)酵素のHNHドメインである小分子インヒビターを市販しないタンパク質に対して有効であることを示した。
この方法の本質的な一般性は、シリカ分子生成のエキサイティングな分野が進化するにつれて適用され続けると信じている。
実装と再現性を容易にするため、私たちはChemSpaceAL Pythonパッケージを通じてすべてのソフトウェアを利用可能にしました。
関連論文リスト
- Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
分子生成のための階層型テキスト変換法 (HI-Mol) を提案する。
HI-Molは分子分布を理解する上での階層的情報、例えば粗い特徴ときめ細かい特徴の重要性にインスパイアされている。
単一レベルトークン埋め込みを用いた画像領域の従来のテキストインバージョン法と比較して, マルチレベルトークン埋め込みにより, 基礎となる低ショット分子分布を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-05-05T08:35:23Z) - Mol-AIR: Molecular Reinforcement Learning with Adaptive Intrinsic Rewards for Goal-directed Molecular Generation [0.0]
Mol-AIRは、ゴール指向分子生成のための適応型固有報酬を用いた強化学習ベースのフレームワークである。
ベンチマークテストでは、Moll-AIRは所望の特性を持つ分子を生成する既存のアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-29T10:44:51Z) - FREED++: Improving RL Agents for Fragment-Based Molecule Generation by
Thorough Reproduction [33.57089414199478]
強化学習(Reinforcement Learning, RL)はドッキングスコア(DS)を報奨として分子を生成するための有望なアプローチとして登場した。
我々はFREED(arXiv:2110.01219)と呼ばれる分子生成の最近のモデルを再現し、精査し、改善する
論文 参考訳(メタデータ) (2024-01-18T09:54:19Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
本稿では,化学反応を用いて分子表現の学習を支援することを提案する。
本手法は,1) 埋め込み空間を適切に整理し, 2) 分子埋め込みの一般化能力を向上させるために有効であることが証明された。
実験結果から,本手法は様々なダウンストリームタスクにおける最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2021-09-21T00:08:43Z) - The Synthesizability of Molecules Proposed by Generative Models [3.032184156362992]
機能性分子の発見は高価で時間を要するプロセスである。
初期の薬物発見への関心が高まる技術のひとつに、デ・ノボの分子生成と最適化がある。
これらの手法は、多目的関数の最大化を目的とした新しい分子構造を示唆することができる。
しかし、これらのアプローチの実用性は、合成可能性の無知によって汚される。
論文 参考訳(メタデータ) (2020-02-17T15:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。