論文の概要: Unsupervised Tumor-Aware Distillation for Multi-Modal Brain Image Translation
- arxiv url: http://arxiv.org/abs/2403.20168v1
- Date: Fri, 29 Mar 2024 13:35:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:34:34.151336
- Title: Unsupervised Tumor-Aware Distillation for Multi-Modal Brain Image Translation
- Title(参考訳): マルチモーダル脳画像翻訳のための教師なし腫瘍認識蒸留法
- Authors: Chuan Huang, Jia Wei, Rui Li,
- Abstract要約: 教師なしマルチモーダル脳画像翻訳は広く研究されている。
既存の方法は翻訳中の脳腫瘍の変形の問題に悩まされている。
UTAD-Netと呼ばれる教師なしの腫瘍対応蒸留教員ネットワークを提案する。
- 参考スコア(独自算出の注目度): 8.380597715285237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal brain images from MRI scans are widely used in clinical diagnosis to provide complementary information from different modalities. However, obtaining fully paired multi-modal images in practice is challenging due to various factors, such as time, cost, and artifacts, resulting in modality-missing brain images. To address this problem, unsupervised multi-modal brain image translation has been extensively studied. Existing methods suffer from the problem of brain tumor deformation during translation, as they fail to focus on the tumor areas when translating the whole images. In this paper, we propose an unsupervised tumor-aware distillation teacher-student network called UTAD-Net, which is capable of perceiving and translating tumor areas precisely. Specifically, our model consists of two parts: a teacher network and a student network. The teacher network learns an end-to-end mapping from source to target modality using unpaired images and corresponding tumor masks first. Then, the translation knowledge is distilled into the student network, enabling it to generate more realistic tumor areas and whole images without masks. Experiments show that our model achieves competitive performance on both quantitative and qualitative evaluations of image quality compared with state-of-the-art methods. Furthermore, we demonstrate the effectiveness of the generated images on downstream segmentation tasks. Our code is available at https://github.com/scut-HC/UTAD-Net.
- Abstract(参考訳): MRIスキャンによるマルチモーダル脳画像は、様々なモダリティから補完的な情報を提供するために臨床診断に広く用いられている。
しかし、時間、コスト、アーティファクトといった様々な要因により、実際に完全にペア化されたマルチモーダル画像を得るのは難しいため、モダリティを欠く脳画像が得られる。
この問題に対処するために、教師なしマルチモーダル脳画像翻訳が広く研究されている。
既存の方法は、画像全体を翻訳する際に腫瘍領域に集中できないため、翻訳中の脳腫瘍の変形の問題に悩まされている。
本稿では, 腫瘍領域を正確に知覚・翻訳できる, UTAD-Net と呼ばれる教師なしの蒸留指導者ネットワークを提案する。
具体的には,教師ネットワークと学生ネットワークの2つの部分から構成される。
教師ネットワークは、まず、未ペア画像と対応する腫瘍マスクを用いて、ソースからターゲットモダリティへのエンドツーエンドマッピングを学習する。
そして、翻訳知識を学生ネットワークに蒸留し、マスクなしでより現実的な腫瘍領域と画像全体を生成する。
実験により, 画像品質の定量評価と定性評価の両面において, 最先端の手法と比較して競合性能が得られた。
さらに、下流セグメンテーションタスクにおいて生成された画像の有効性を示す。
私たちのコードはhttps://github.com/scut-HC/UTAD-Net.orgで公開されています。
関連論文リスト
- Generative Adversarial Networks for Brain Images Synthesis: A Review [2.609784101826762]
医用画像において、画像合成とは、ある画像(シーケンス、モダリティ)を別の画像(シーケンス、モダリティ)から推定する過程である。
GAN(Generative Adversarial Network)は、GAN(Generative-based Deep Learning)の一種。
我々は,CTからPETへの画像合成,CTからMRIへの画像合成,PETへの画像合成,およびその逆を含む最近のGANの展開を要約した。
論文 参考訳(メタデータ) (2023-05-16T17:28:06Z) - Learning to Learn Unlearned Feature for Brain Tumor Segmentation [13.402170359958752]
そこで本研究では,脳腫瘍の分類を微調整するアルゴリズムを提案し,少数のデータサンプルを必要とせず,ネットワークが元のタスクを忘れないようにする。
本稿では, 高次グリオーマから脳転移への転移学習手法を示し, 提案アルゴリズムがグリオーマと脳転移ドメインのバランスのとれたパラメータを数ステップで達成できることを実証する。
論文 参考訳(メタデータ) (2023-05-13T05:26:25Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
パブリックMRIデータセットは、脳腫瘍、髄膜腫、グリオーマ、下垂体腫瘍の3つの変種を持つ233人の患者の3064 TI強調画像を含む。
データセットファイルは、よく知られた画像セグメンテーション深層学習モデルの実装とトレーニングを利用する方法論に順応する前に、変換され、前処理される。
実験の結果,Adamを用いた再帰的残差U-Netは平均差0.8665に到達し,他の最先端ディープラーニングモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-04-29T13:33:21Z) - Unsupervised Brain Tumor Segmentation with Image-based Prompts [12.525656002678856]
我々は,脳腫瘍の診断を可能にする画像ベースのプロンプトを設計し,教師なし脳腫瘍セグメンテーションへのアプローチを提案する。
大量の注釈付きデータで脳腫瘍セグメンテーションのモデルを直接訓練する代わりに、私たちは質問に答えられるモデルをトレーニングしようとしています。
手作りのデザインは、あらゆる種類の実際の腫瘍を表現するには単純すぎるため、訓練されたモデルは、実際には異常の問題に答えるのではなく、単純化された手作りのタスクに過度に適合する可能性がある。
論文 参考訳(メタデータ) (2023-04-04T02:28:25Z) - Multi-Modal Masked Autoencoders for Medical Vision-and-Language
Pre-Training [62.215025958347105]
マルチモーダルマスク付きオートエンコーダを用いた自己教師型学習パラダイムを提案する。
我々は、ランダムにマスキングされた画像やテキストから欠落したピクセルやトークンを再構成することで、クロスモーダルなドメイン知識を学習する。
論文 参考訳(メタデータ) (2022-09-15T07:26:43Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Interpretation of 3D CNNs for Brain MRI Data Classification [56.895060189929055]
T1脳MRIにおける拡散テンソル画像の男女差について,これまでの知見を拡張した。
ボクセルの3次元CNN解釈を3つの解釈法の結果と比較する。
論文 参考訳(メタデータ) (2020-06-20T17:56:46Z) - Weakly Supervised PET Tumor Detection Using Class Response [3.947298454012977]
ポジトロン・エミッション・トモグラフィー (PET) 画像において, 画像レベルでのクラスラベルのみを用いて, 病変の種類を同定する新しい手法を提案する。
提案手法の利点は,PET画像の2次元像のみを用いて3次元画像中の腫瘍の体積全体を検出することであり,非常に有望な結果を示すことである。
論文 参考訳(メタデータ) (2020-03-18T17:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。