論文の概要: Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks
- arxiv url: http://arxiv.org/abs/2403.20136v1
- Date: Fri, 29 Mar 2024 12:01:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:44:18.845232
- Title: Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks
- Title(参考訳): IoVネットワークにおけるセキュアかつ効率的な情報通信のための分散セキュリティアーキテクチャ
- Authors: Jiani Fan, Lwin Khin Shar, Jiale Guo, Wenzhuo Yang, Dusit Niyato, Kwok-Yan Lam,
- Abstract要約: IoVネットワークにおけるインフォテインメントデータ通信の安全性の欠如は、社会的エンジニアリング攻撃の容易なアクセスポイントを意図せずに開放することができる。
特に、まずIoVネットワークでデータ通信を分類し、各データ通信のセキュリティ焦点を調べ、その後、ファイル間通信でセキュリティ保護を提供するための異なるセキュリティアーキテクチャを開発する。
- 参考スコア(独自算出の注目度): 55.340315838742015
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper aims to provide differentiated security protection for infotainment data communication in Internet-of-Vehicle (IoV) networks. The IoV is a network of vehicles that uses various sensors, software, built-in hardware, and communication technologies to enable information exchange between pedestrians, cars, and urban infrastructure. Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks. The attacker can spread false information about traffic conditions, mislead drivers in their directions, and interfere with traffic management. Such attacks can also cause distractions to the driver, which has a potential implication for the safety of driving. The existing literature on IoV communication and network security focuses mainly on generic solutions. In a heterogeneous communication network where different types of communication coexist, we can improve the efficiency of security solutions by considering the different security and efficiency requirements of data communications. Hence, we propose a differentiated security mechanism for protecting infotainment data communication in IoV networks. In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis. Our architecture leverages Named Data Networking (NDN) so that infotainment files can be efficiently circulated throughout the network where any node can own a copy of the file, thus improving the hit ratio for user file requests. In addition, we propose a time-sensitive Key-Policy Attribute-Based Encryption (KP-ABE) scheme for sharing subscription-based infotainment data...
- Abstract(参考訳): 本稿では,インターネット・オブ・Vehicle(IoV)ネットワークにおけるインフォテインメントデータ通信に対するセキュリティ保護の差別化を図る。
IoVは、さまざまなセンサー、ソフトウェア、内蔵ハードウェア、通信技術を使って歩行者、車、都市インフラ間の情報交換を可能にする車両ネットワークである。
IoVネットワークにおけるインフォテインメントデータ通信の安全性の欠如は、社会的エンジニアリング攻撃の容易なアクセスポイントを意図せずに開放することができる。
攻撃者は、交通状況に関する誤った情報を拡散し、運転者の方向を誤解させ、交通管理を妨害することができる。
このような攻撃は運転者の注意をそらすこともでき、運転の安全性に影響を及ぼす可能性がある。
IoV通信とネットワークセキュリティに関する既存の文献は、主にジェネリックソリューションに焦点を当てている。
異なる種類の通信が共存する異種通信ネットワークでは、データ通信の異なるセキュリティと効率の要求を考慮し、セキュリティソリューションの効率を改善することができる。
そこで本稿では,IoVネットワークにおけるインフォテインメントデータ通信を保護するためのセキュリティ機構について述べる。
特に、まずIoVネットワークでデータ通信を分類し、各データ通信のセキュリティ焦点を調べ、その後、ファイル間通信でセキュリティ保護を提供するための異なるセキュリティアーキテクチャを開発する。
我々のアーキテクチャは、名前付きデータネットワーク(NDN)を活用して、任意のノードがファイルのコピーを所有できるネットワークを通してインフォテインメントファイルを効率よく循環できるようにし、ユーザファイル要求のヒット率を改善する。
さらに、サブスクリプションベースのインフォテインメントデータを共有するための、時間に敏感なKey-Policy Attribute-Based Encryption(KP-ABE)方式を提案する。
関連論文リスト
- Unique ID based Trust Scheme for Improved IoV Wireless Sensor Network Security Against Power Controlled Sybil Attacks [1.906179410714637]
無線センサネットワーク(WSN)は、車両間通信(V2X)をサポートするために車両ネットワークで広く利用されている。
WSNは、分散した性質とリソース制限のあるモジュールのため、セキュリティ上の課題に直面します。
本稿では,Sybil攻撃を回避するために,ユニークな識別に基づく信頼経路ルーティング方式(UITrust)を提案する。
論文 参考訳(メタデータ) (2024-10-05T07:20:55Z) - Cyberattack Data Analysis in IoT Environments using Big Data [0.0]
私たちの研究は、相互運用性や標準化プロトコルなど、接続性やセキュリティ上の課題の増加に対処しています。
セキュリティ脆弱性の詳細な分析では、攻撃行動、ネットワークトラフィック異常、TCPフラグの使用、ターゲット攻撃など、複雑なパターンと脅威を特定しました。
論文 参考訳(メタデータ) (2024-06-14T02:12:43Z) - AI-Protected Blockchain-based IoT environments: Harnessing the Future of Network Security and Privacy [0.0]
本稿では,ブロックチェーン対応IoTシステムにおいて,人工知能が果たす重要な役割について考察する。
AIと組み合わせると、これらのシステムはセキュリティプロトコルの自動化と最適化だけでなく、新しく進化するサイバー脅威に対応する能力を得る。
本稿は、AIによって強化されたブロックチェーン技術がIoT環境におけるネットワークセキュリティとプライバシに革命をもたらす方法について、より深く理解することを目的としている。
論文 参考訳(メタデータ) (2024-05-22T17:14:19Z) - Decentralized Multimedia Data Sharing in IoV: A Learning-based Equilibrium of Supply and Demand [57.82021900505197]
インターネット・オブ・ビークルズ(IoV)は、道路の安全性を高め、交通渋滞を軽減し、インフォテインメントアプリケーションを通じてユーザーエクスペリエンスを向上させることにより、交通システムを変革する大きな可能性を秘めている。
分散データ共有は、セキュリティ、プライバシ、信頼性を改善し、IoVにおけるインフォテインメントデータの共有を容易にする。
市場における需給バランスを学習するための多知能強化学習に基づく分散型データ共有インセンティブ機構を提案する。
論文 参考訳(メタデータ) (2024-03-29T14:58:28Z) - SISSA: Real-time Monitoring of Hardware Functional Safety and
Cybersecurity with In-vehicle SOME/IP Ethernet Traffic [49.549771439609046]
本稿では,車内機能安全とサイバーセキュリティをモデル化・解析するためのSOME/IP通信トラフィックベースアプローチであるSISSAを提案する。
具体的には、SISSAはWeibullディストリビューションでハードウェア障害をモデル化し、SOME/IP通信に対する5つの潜在的な攻撃に対処する。
広範囲な実験結果から,SISSAの有効性と有効性が確認された。
論文 参考訳(メタデータ) (2024-02-21T03:31:40Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Blockchain-aided Secure Semantic Communication for AI-Generated Content
in Metaverse [59.04428659123127]
仮想交通ネットワークにおけるAIGCサービスのためのブロックチェーン支援セマンティックコミュニケーションフレームワークを提案する。
学習に基づくセマンティック・アタック・スキームを用いて,種々の損失関数を用いて,敵対的セマンティック・データを生成する。
また、ブロックチェーンとゼロ知識証明を用いて、敵対的セマンティックデータのセマンティック類似性の違いを識別するセマンティックディフェンススキームを設計する。
論文 参考訳(メタデータ) (2023-01-25T02:32:02Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
セキュアでプライバシ保護されたコラボレーティブなIoT侵入検出を実現するために,階層的なブロックチェーンベースのフェデレーション学習フレームワークを提案する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
論文 参考訳(メタデータ) (2022-04-08T19:06:16Z) - A Systematic Literature Review on Blockchain Enabled Federated Learning
Framework for Internet of Vehicles [1.0499611180329804]
フェデレートラーニング(FL)は、IoVのデータプライバシとセキュリティを保護する新しいアイデアとして証明されている。
IoVに対するBC-Enabled Learningフレームワークの適用と実装に関する総合的な調査を行う。
論文 参考訳(メタデータ) (2022-03-10T07:06:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。