論文の概要: Stochastic Optimization with Constraints: A Non-asymptotic Instance-Dependent Analysis
- arxiv url: http://arxiv.org/abs/2404.00042v1
- Date: Sun, 24 Mar 2024 14:45:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-07 23:07:46.879599
- Title: Stochastic Optimization with Constraints: A Non-asymptotic Instance-Dependent Analysis
- Title(参考訳): 制約による確率的最適化:非漸近的インスタンス依存分析
- Authors: Koulik Khamaru,
- Abstract要約: 凸制約下での凸最適化のための自然分散低減近位勾配(VRPG)アルゴリズムの挙動を解析する。
我々の主な成果は、VRPGアルゴリズムの漸近的でない保証である。
我々の保証は、損失関数の複雑さ、雑音の可変性、制約集合の幾何を捉えていることを示す。
- 参考スコア(独自算出の注目度): 2.1756081703276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of stochastic convex optimization under convex constraints. We analyze the behavior of a natural variance reduced proximal gradient (VRPG) algorithm for this problem. Our main result is a non-asymptotic guarantee for VRPG algorithm. Contrary to minimax worst case guarantees, our result is instance-dependent in nature. This means that our guarantee captures the complexity of the loss function, the variability of the noise, and the geometry of the constraint set. We show that the non-asymptotic performance of the VRPG algorithm is governed by the scaled distance (scaled by $\sqrt{N}$) between the solutions of the given problem and that of a certain small perturbation of the given problem -- both solved under the given convex constraints; here, $N$ denotes the number of samples. Leveraging a well-established connection between local minimax lower bounds and solutions to perturbed problems, we show that as $N \rightarrow \infty$, the VRPG algorithm achieves the renowned local minimax lower bound by H\`{a}jek and Le Cam up to universal constants and a logarithmic factor of the sample size.
- Abstract(参考訳): 凸制約下での確率的凸最適化の問題を考察する。
本稿では, 自然分散低減近位勾配(VRPG)アルゴリズムの挙動を解析する。
我々の主な成果は、VRPGアルゴリズムの漸近的でない保証である。
minimax最悪のケースが保証されているのとは対照的に、私たちの結果は本質的にインスタンスに依存します。
これは、我々の保証が損失関数の複雑さ、雑音の可変性、制約集合の幾何学を捉えることを意味する。
VRPGアルゴリズムの漸近的でない性能は、与えられた問題の解と与えられた問題の小さな摂動の解の間のスケールされた距離($\sqrt{N}$でスケール)によって支配されることを示す。
局所ミニマックスローバウンドと摂動問題への解とのよく確立された接続を利用し、$N \rightarrow \infty$として、VRPGアルゴリズムは、H\`{a}jek と Le Cam による有名な局所ミニマックスローバウンドを、標本サイズの普遍定数と対数係数まで達成することを示した。
関連論文リスト
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
本稿では,2段階の適応性を持つオンライン凸最適化手法を提案する。
我々は$mathcalO(log V_T)$, $mathcalO(d log V_T)$, $hatmathcalO(sqrtV_T)$ regret bounds for strong convex, exp-concave and convex loss function。
論文 参考訳(メタデータ) (2023-07-17T09:55:35Z) - Accelerated SGD for Non-Strongly-Convex Least Squares [14.010916616909743]
非強凸設定における最小二乗回帰問題の近似を考察する。
本稿では,問題のノイズに依存して最適な予測誤差率を実現するための,最初の実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T14:39:33Z) - Accelerated and instance-optimal policy evaluation with linear function
approximation [17.995515643150657]
既存のアルゴリズムはこれらの下界の少なくとも1つと一致しない。
我々は,両下界を同時に一致させる高速時間差分アルゴリズムを開発し,インスタンス最適性という強い概念を実現する。
論文 参考訳(メタデータ) (2021-12-24T17:21:04Z) - Instance-optimality in optimal value estimation: Adaptivity via
variance-reduced Q-learning [99.34907092347733]
本稿では,マルコフ決定過程における最適な$Q$値関数を離散状態と動作で推定する問題を解析する。
局所的なミニマックスフレームワークを用いて、この関数は任意の推定手順の精度の低い境界に現れることを示す。
他方,Q$ラーニングの分散還元版を解析することにより,状態と行動空間の対数的要因まで,下位境界のシャープさを確立する。
論文 参考訳(メタデータ) (2021-06-28T00:38:54Z) - A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization [25.73397307080647]
本稿では,汎用凸あるいは非汎用機械目標の新しいモデルを提案する。
本稿では,各サブプロブレムの点レベルを徐々に緩和した制約を解くアルゴリズムを提案する。
我々は,新しい数値スケール問題の有効性を実証する。
論文 参考訳(メタデータ) (2020-10-23T05:24:05Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Dynamic Regret of Convex and Smooth Functions [93.71361250701075]
非定常環境におけるオンライン凸最適化について検討する。
パフォーマンス指標として動的後悔を選択します。
本研究では, 滑らかさを活かして, 動的後悔をさらに高めることが可能であることを示す。
論文 参考訳(メタデータ) (2020-07-07T14:10:57Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。