論文の概要: Multi-Region Transfer Learning for Segmentation of Crop Field Boundaries in Satellite Images with Limited Labels
- arxiv url: http://arxiv.org/abs/2404.00179v1
- Date: Fri, 29 Mar 2024 22:24:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 06:56:43.475299
- Title: Multi-Region Transfer Learning for Segmentation of Crop Field Boundaries in Satellite Images with Limited Labels
- Title(参考訳): 限られたラベルを持つ衛星画像における作物野境界の分割のためのマルチリージョン移動学習
- Authors: Hannah Kerner, Saketh Sundar, Mathan Satish,
- Abstract要約: 本稿では,ラベル付きデータを持たない地域での衛星画像における作物の畑の境界のセグメンテーションについて述べる。
提案手法は既存の手法よりも優れており,マルチリージョン転送学習によって複数のモデルアーキテクチャの性能が大幅に向上することを示す。
- 参考スコア(独自算出の注目度): 6.79949280366368
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The goal of field boundary delineation is to predict the polygonal boundaries and interiors of individual crop fields in overhead remotely sensed images (e.g., from satellites or drones). Automatic delineation of field boundaries is a necessary task for many real-world use cases in agriculture, such as estimating cultivated area in a region or predicting end-of-season yield in a field. Field boundary delineation can be framed as an instance segmentation problem, but presents unique research challenges compared to traditional computer vision datasets used for instance segmentation. The practical applicability of previous work is also limited by the assumption that a sufficiently-large labeled dataset is available where field boundary delineation models will be applied, which is not the reality for most regions (especially under-resourced regions such as Sub-Saharan Africa). We present an approach for segmentation of crop field boundaries in satellite images in regions lacking labeled data that uses multi-region transfer learning to adapt model weights for the target region. We show that our approach outperforms existing methods and that multi-region transfer learning substantially boosts performance for multiple model architectures. Our implementation and datasets are publicly available to enable use of the approach by end-users and serve as a benchmark for future work.
- Abstract(参考訳): フィールドバウンダリデラインの目的は、個々の作物畑の多角形境界と内部を、リモートで感知された画像(例えば、衛星やドローンから)で予測することである。
フィールド境界の自動デライン化は、農業における多くの実世界のユースケースにおいて、ある地域で栽培されている地域を推定したり、ある地域でのエンド・オブ・シーズンの収量を予測するなど、必要なタスクである。
フィールド境界記述は、インスタンスセグメンテーション問題として表すことができるが、インスタンスセグメンテーションに使用される従来のコンピュータビジョンデータセットと比較して、ユニークな研究課題が提示される。
以前の研究の実用性はまた、フィールド境界線モデルを適用するような十分に大きなラベル付きデータセットが利用できるという仮定によって制限されている。
本稿では,多領域移動学習を用いて対象領域のモデル重みを適応させるラベル付きデータを持たない領域において,衛星画像における作物のフィールド境界のセグメンテーションを行う手法を提案する。
提案手法は既存の手法よりも優れており,マルチリージョン転送学習によって複数のモデルアーキテクチャの性能が大幅に向上することを示す。
私たちの実装とデータセットは、エンドユーザによるアプローチの使用を可能にするために公開されており、将来の作業のベンチマークとして機能します。
関連論文リスト
- Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization [70.02187124865627]
オープンソースの単一ソースドメインの一般化は、単一のソースドメインを使用して、未知のターゲットドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
本稿では,領域拡大と境界成長に基づく新しい学習手法を提案する。
提案手法は,いくつかの領域横断画像分類データセットにおいて,大幅な改善と最先端性能を実現することができる。
論文 参考訳(メタデータ) (2024-11-05T09:08:46Z) - Investigating the Segment Anything Foundation Model for Mapping Smallholder Agriculture Field Boundaries Without Training Labels [0.24966046892475396]
本研究は,インド・ビハール州の農地境界を規定するSegment Anything Model(SAM)について検討した。
我々はSAMの性能を3つのモデルチェックポイント、様々な入力サイズ、マルチ日付衛星画像、エッジ強調画像で評価した。
異なる入力画像サイズを使用することで精度が向上し、マルチ日付衛星画像を使用する場合に最も顕著な改善がなされる。
論文 参考訳(メタデータ) (2024-07-01T23:06:02Z) - Region-aware Distribution Contrast: A Novel Approach to Multi-Task Partially Supervised Learning [50.88504784466931]
マルチタスク密度予測にはセマンティックセグメンテーション、深さ推定、表面正規推定が含まれる。
既存のソリューションは通常、グローバルなクロスタスク画像マッチングのためのグローバルなイメージ表現の学習に依存している。
本提案では,ガウス分布を用いた地域表現をモデル化する。
論文 参考訳(メタデータ) (2024-03-15T12:41:30Z) - Cross Domain Early Crop Mapping using CropSTGAN [12.271756709807898]
本稿では,Crop Mapping Spectral-temporal Generative Adrial Neural Network (CropSTGAN)を紹介する。
CropSTGANは、ターゲットドメインのスペクトル特徴をソースドメインのスペクトル特徴に変換することを学習し、実質的に大きな相似性をブリッジする。
実験では、CropSTGANは様々な最先端(SOTA)メソッドに対してベンチマークされる。
論文 参考訳(メタデータ) (2024-01-15T00:27:41Z) - R-MAE: Regions Meet Masked Autoencoders [113.73147144125385]
我々は、自己教師付き画像表現学習のための単語の潜在的な視覚的類似として領域を探索する。
生成前トレーニングベースラインであるMasked Autoencoding (MAE) に触発されて, 画素群や領域群から学習するためのマスク付き領域オートエンコーディングを提案する。
論文 参考訳(メタデータ) (2023-06-08T17:56:46Z) - BI-GCN: Boundary-Aware Input-Dependent Graph Convolution Network for
Biomedical Image Segmentation [21.912509900254364]
セグメント化タスクにグラフ畳み込みを適用し,改良されたtextitLaplacianを提案する。
本手法は,大腸内視鏡像におけるポリープの分画と光ディスク,光カップのカラーファンドス画像における画期的なアプローチよりも優れていた。
論文 参考訳(メタデータ) (2021-10-27T21:12:27Z) - Domain-Adversarial Training of Self-Attention Based Networks for Land
Cover Classification using Multi-temporal Sentinel-2 Satellite Imagery [0.0]
ほとんどの実用的なアプリケーションはラベル付きデータには依存せず、この分野では調査は時間のかかるソリューションである。
本稿では,異なる地理的領域間のドメイン不一致を橋渡しする深層ニューラルネットワークの対比訓練について検討する。
論文 参考訳(メタデータ) (2021-04-01T15:45:17Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
大規模ラベル付きトレーニングデータセットにより、ディープニューラルネットワークは、幅広いベンチマークビジョンタスクを拡張できるようになった。
多くのアプリケーションにおいて、大量のラベル付きデータを取得するのは非常に高価で時間を要する。
限られたラベル付きトレーニングデータに対処するため、大規模ラベル付きソースドメインでトレーニングされたモデルを、疎ラベルまたは未ラベルのターゲットドメインに直接適用しようと試みている人も多い。
論文 参考訳(メタデータ) (2020-09-01T00:06:50Z) - Weakly Supervised Domain Adaptation for Built-up Region Segmentation in
Aerial and Satellite Imagery [3.8508264614798517]
環境に対する人間の影響,公共政策の影響,一般都市人口分析を理解する上で,構築された地域推定は重要な要素である。
航空や衛星画像の多様性と、この多様性をカバーするラベル付きデータの欠如により、機械学習アルゴリズムの一般化が困難になる。
本稿では,衛星画像と空中画像の課題に対処する新しい領域適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-05T10:05:01Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
教師なし領域適応は様々なコンピュータビジョンタスクにおいて重要である。
教師なし領域適応のための新しい空間注意ピラミッドネットワークを設計する。
我々の手法は最先端の手法に対して大きなマージンで好適に機能する。
論文 参考訳(メタデータ) (2020-03-29T09:03:23Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
本稿では,クロスドメインオブジェクト検出のための特徴適応手法を提案する。
粗粒度では、アテンション機構を採用して前景領域を抽出し、その辺縁分布に応じて整列する。
粒度の細かい段階では、同じカテゴリのグローバルプロトタイプと異なるドメインとの距離を最小化することにより、前景の条件分布アライメントを行う。
論文 参考訳(メタデータ) (2020-03-23T13:40:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。