論文の概要: Investigating the Segment Anything Foundation Model for Mapping Smallholder Agriculture Field Boundaries Without Training Labels
- arxiv url: http://arxiv.org/abs/2407.01846v1
- Date: Mon, 1 Jul 2024 23:06:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 17:13:22.498241
- Title: Investigating the Segment Anything Foundation Model for Mapping Smallholder Agriculture Field Boundaries Without Training Labels
- Title(参考訳): 訓練ラベルのない小作農場境界図作成のためのセグメンテーション基礎モデルの検討
- Authors: Pratyush Tripathy, Kathy Baylis, Kyle Wu, Jyles Watson, Ruizhe Jiang,
- Abstract要約: 本研究は,インド・ビハール州の農地境界を規定するSegment Anything Model(SAM)について検討した。
我々はSAMの性能を3つのモデルチェックポイント、様々な入力サイズ、マルチ日付衛星画像、エッジ強調画像で評価した。
異なる入力画像サイズを使用することで精度が向上し、マルチ日付衛星画像を使用する場合に最も顕著な改善がなされる。
- 参考スコア(独自算出の注目度): 0.24966046892475396
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate mapping of agricultural field boundaries is crucial for enhancing outcomes like precision agriculture, crop monitoring, and yield estimation. However, extracting these boundaries from satellite images is challenging, especially for smallholder farms and data-scarce environments. This study explores the Segment Anything Model (SAM) to delineate agricultural field boundaries in Bihar, India, using 2-meter resolution SkySat imagery without additional training. We evaluate SAM's performance across three model checkpoints, various input sizes, multi-date satellite images, and edge-enhanced imagery. Our results show that SAM correctly identifies about 58% of field boundaries, comparable to other approaches requiring extensive training data. Using different input image sizes improves accuracy, with the most significant improvement observed when using multi-date satellite images. This work establishes proof of concept for using SAM and maximizing its potential in agricultural field boundary mapping. Our work highlights SAM's potential in delineating agriculture field boundary in training-data scarce settings to enable a wide range of agriculture related analysis.
- Abstract(参考訳): 農地境界の正確なマッピングは、精密農業、作物のモニタリング、収量推定などの成果の促進に不可欠である。
しかし、衛星画像からこれらの境界を抽出することは、特に小規模農家やデータ共有環境において困難である。
本研究は,インド・ビハール州の農地境界を2m解像度のSkySat画像を用いて,付加的な訓練をすることなく,Segment Anything Model (SAM) を探索するものである。
我々はSAMの性能を3つのモデルチェックポイント、様々な入力サイズ、マルチ日付衛星画像、エッジ強調画像で評価した。
その結果,SAMはフィールド境界の約58%を的確に識別し,広範囲なトレーニングデータを必要とする他の手法に匹敵することがわかった。
異なる入力画像サイズを使用することで精度が向上し、マルチ日付衛星画像を使用する場合に最も顕著な改善がなされる。
この研究は、SAMの使用と、農地境界写像におけるそのポテンシャルを最大化する概念の証明を確立する。
我々の研究は、幅広い農業関連分析を可能にする訓練データ不足環境において、SAMが農業分野の境界線を規定する可能性を強調している。
関連論文リスト
- Multi-Region Transfer Learning for Segmentation of Crop Field Boundaries in Satellite Images with Limited Labels [6.79949280366368]
本稿では,ラベル付きデータを持たない地域での衛星画像における作物の畑の境界のセグメンテーションについて述べる。
提案手法は既存の手法よりも優れており,マルチリージョン転送学習によって複数のモデルアーキテクチャの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-03-29T22:24:12Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Can SAM recognize crops? Quantifying the zero-shot performance of a
semantic segmentation foundation model on generating crop-type maps using
satellite imagery for precision agriculture [4.825257766966091]
クロップ型マップは意思決定支援ツールの重要な情報である。
本稿では,Meta AIのSegment Anything Model(SAM)の作物マップ予測機能について検討する。
SAMは最大3チャンネルの入力に制限されており、ゼロショットの使用は本質的にクラスに依存しない。
論文 参考訳(メタデータ) (2023-11-25T23:40:09Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNetは、2020-2023年のエチオピアのティグレイとアムハラの農場の存在をマッピングするためのデータセットである。
本研究は,多くの小作システムの特徴ある収穫杭の検出に基づく新しい手法を提案する。
本研究は, 農作物のリモートセンシングが, 食品の安全地帯において, よりタイムリーかつ正確な農地評価に寄与することが示唆された。
論文 参考訳(メタデータ) (2023-08-23T11:03:28Z) - PhenoBench -- A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain [29.395926321984565]
本稿では,実際の農業分野の意味論的解釈のための注釈付きデータセットとベンチマークを提案する。
UAVで記録したデータセットは、作物や雑草の高品質でピクセル単位のアノテーションを提供するだけでなく、作物の葉のインスタンスも同時に提供する。
異なるフィールドで構成された隠れテストセット上で、さまざまなタスクのベンチマークを提供する。
論文 参考訳(メタデータ) (2023-06-07T16:04:08Z) - A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering [49.732628643634975]
Meta AI Researchが開発したSegment Anything Model (SAM)は、画像とビデオのセグメンテーションのための堅牢なフレームワークを提供する。
このサーベイはSAMファミリーの包括的調査を提供し、SAMとSAM 2は粒度と文脈理解の進歩を強調している。
論文 参考訳(メタデータ) (2023-05-12T07:21:59Z) - Extended Agriculture-Vision: An Extension of a Large Aerial Image
Dataset for Agricultural Pattern Analysis [11.133807938044804]
農業ビジョンデータセットの改良版(Chiu et al., 2020b)をリリースする。
このデータセットは,3600大,高解像度(10cm/ピクセル),フルフィールド,赤緑色,近赤外画像の事前トレーニングにより拡張する。
下流分類とセマンティックセグメンテーションの両タスクにおいて、異なるコントラスト学習アプローチをベンチマークすることで、このデータの有用性を実証する。
論文 参考訳(メタデータ) (2023-03-04T17:35:24Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - The 1st Agriculture-Vision Challenge: Methods and Results [144.57794061346974]
第1回農業ビジョンチャレンジは、航空画像から農業パターン認識のための新しい効果的なアルゴリズムの開発を奨励することを目的としている。
約57の参加チームが、航空農業のセマンティックセグメンテーションの最先端を達成するために競っている。
本報告では,課題における注目すべき手法と成果について概説する。
論文 参考訳(メタデータ) (2020-04-21T05:02:31Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
本稿では,農業パターンのセマンティックセグメンテーションのための大規模空中農地画像データセットであるGarmry-Visionを提案する。
各画像はRGBと近赤外線(NIR)チャンネルで構成され、解像度は1ピクセルあたり10cmである。
農家にとって最も重要な9種類のフィールド異常パターンに注釈を付ける。
論文 参考訳(メタデータ) (2020-01-05T20:19:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。