論文の概要: Robust Learning for Optimal Dynamic Treatment Regimes with Observational Data
- arxiv url: http://arxiv.org/abs/2404.00221v4
- Date: Wed, 20 Nov 2024 05:50:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 12:32:40.953804
- Title: Robust Learning for Optimal Dynamic Treatment Regimes with Observational Data
- Title(参考訳): 観測データを用いた最適動的処理規則のロバスト学習
- Authors: Shosei Sakaguchi,
- Abstract要約: 本研究では,各段階における各個人に対する最適な治療課題を,個人の進化史に基づいて導くための最適動的治療体制(DTR)の統計的学習について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Public policies and medical interventions often involve dynamics in their treatment assignments, where individuals receive a series of interventions over multiple stages. We study the statistical learning of optimal dynamic treatment regimes (DTRs) that guide the optimal treatment assignment for each individual at each stage based on the individual's evolving history. We propose a doubly robust, classification-based approach to learning the optimal DTR using observational data under the assumption of sequential ignorability. This approach learns the optimal DTR through backward induction. At each step, it constructs an augmented inverse probability weighting (AIPW) estimator of the policy value function and maximizes it to learn the optimal policy for the corresponding stage. We show that the resulting DTR can achieve an optimal convergence rate of $n^{-1/2}$ for welfare regret under mild convergence conditions on estimators of the nuisance components.
- Abstract(参考訳): 公共政策や医療介入は、しばしば治療の課題においてダイナミックスを伴い、個人は複数の段階にわたって一連の介入を受ける。
本研究では,各段階における各個人に対する最適な治療課題を,個人の進化史に基づいて導くための最適動的治療体制(DTR)の統計的学習について検討する。
逐次的無知を前提とした観測データを用いて最適なDTRを学習するための2つの頑健な分類に基づくアプローチを提案する。
このアプローチは、後方誘導により最適なDTRを学習する。
各ステップにおいて、ポリシ値関数の強化逆確率重み付け(AIPW)推定器を構築し、それを最大化し、対応するステージの最適ポリシーを学習する。
得られたDTRは,n^{-1/2}$の最適収束率を,ニュアンス成分の推定値に対する軽度収束条件下で達成できることを示す。
関連論文リスト
- Stage-Aware Learning for Dynamic Treatments [3.6923632650826486]
動的治療体制のための新しい個別化学習法を提案する。
観測軌道が最適処理と完全に一致しなければならないという制約を緩和することにより,本手法はIPWE法における試料効率と安定性を大幅に改善する。
論文 参考訳(メタデータ) (2023-10-30T06:35:31Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
本稿では,カーネルベースの2倍頑健な因果学習推定器を提案する。
オラクル形式は影響関数の一貫した近似であることを示す。
次に、平均二乗誤差の観点から総合収束解析を行う。
論文 参考訳(メタデータ) (2023-09-22T12:18:53Z) - Efficient and robust transfer learning of optimal individualized
treatment regimes with right-censored survival data [7.308241944759317]
個別治療体制(英: individualized treatment regime、ITR)は、患者の特徴に基づいて治療を割り当てる決定規則である。
本稿では、値関数の2倍頑健な推定器を提案し、その最適ITRは、予め指定されたIRRのクラス内の値関数を最大化することにより学習する。
重篤なメタボリックアシダ血症に対するバイカーボネートナトリウム療法のシミュレーションおよび実データによる評価を行った。
論文 参考訳(メタデータ) (2023-01-13T11:47:10Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
個別多面的治療の観点からの時間的対実予測の包括的枠組み(TCFimt)を提案する。
TCFimtは、選択と時間変化バイアスを軽減するためにSeq2seqフレームワークの逆タスクを構築し、比較学習ベースのブロックを設計し、混合処理効果を分離した主治療効果と因果相互作用に分解する。
提案手法は, 特定の治療法による今後の結果予測と, 最先端手法よりも最適な治療タイプとタイミングを選択する上で, 良好な性能を示す。
論文 参考訳(メタデータ) (2022-12-17T15:01:05Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
本稿では,DCRN(Disentangled Counterfactual Recurrent Network)を提案する。
時間とともに治療効果の因果構造に完全にインスパイアされたアーキテクチャでは、予測精度と疾患理解が向上する。
実データとシミュレーションデータの両方において,DCRNが処理応答予測の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-07T16:40:28Z) - Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints [0.0]
本研究は,各段階の個人に対して,その履歴に基づいて最適な治療課題を導出する最適動的治療体制の推定について検討する。
提案手法は, 下位帰納的帰納的帰納的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属的帰属
論文 参考訳(メタデータ) (2021-06-09T12:42:53Z) - Stochastic Optimization of Areas Under Precision-Recall Curves with
Provable Convergence [66.83161885378192]
ROC(AUROC)と精度リコール曲線(AUPRC)の下の領域は、不均衡問題に対する分類性能を評価するための一般的な指標である。
本稿では,深層学習のためのAUPRCの最適化手法を提案する。
論文 参考訳(メタデータ) (2021-04-18T06:22:21Z) - Evaluating (weighted) dynamic treatment effects by double machine
learning [0.12891210250935145]
本研究では,データ駆動方式で動的処理の因果効果を評価する。
いわゆるNeyman-orthogonal score関数を用いて,中等度(局所的な)不特定性に対する治療効果推定の頑健さを示唆する。
推定子は正規に正規であり、特定の条件下では$sqrtn$-consistentであることを示す。
論文 参考訳(メタデータ) (2020-12-01T09:55:40Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
動的治療体制 (DTR) はパーソナライズされ適応された多段階の治療計画であり、治療決定を個人の初期特徴に適応させ、その後の各段階における中間結果と特徴に適応させる。
本稿では,探索と搾取を慎重にバランスさせることで,遷移モデルと報酬モデルが線形である場合に,速度-最適後悔を実現する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-06T13:03:42Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
時間とともに治療効果を推定するためにCRN(Counterfactual Recurrent Network)を導入する。
CRNは、患者履歴のバランスの取れた表現を構築するために、ドメイン敵のトレーニングを使用する。
本モデルでは, 正解率の予測と適切な治療時期の選択において, 誤差の低減を図っている。
論文 参考訳(メタデータ) (2020-02-10T20:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。