論文の概要: Policy Learning for Optimal Individualized Dose Intervals
- arxiv url: http://arxiv.org/abs/2202.12234v1
- Date: Thu, 24 Feb 2022 17:59:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 19:19:12.374050
- Title: Policy Learning for Optimal Individualized Dose Intervals
- Title(参考訳): 最適個別線量間隔に対する政策学習
- Authors: Guanhua Chen, Xiaomao Li, Menggang Yu
- Abstract要約: このような政策を推定する新しい手法を提案する。
推定された政策は一貫しており、そのリスクはルートnレートで最良クラスの政策に収束する。
- 参考スコア(独自算出の注目度): 3.9801611649762263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of learning individualized dose intervals using
observational data. There are very few previous works for policy learning with
continuous treatment, and all of them focused on recommending an optimal dose
rather than an optimal dose interval. In this paper, we propose a new method to
estimate such an optimal dose interval, named probability dose interval (PDI).
The potential outcomes for doses in the PDI are guaranteed better than a
pre-specified threshold with a given probability (e.g., 50%). The associated
nonconvex optimization problem can be efficiently solved by the
Difference-of-Convex functions (DC) algorithm. We prove that our estimated
policy is consistent, and its risk converges to that of the best-in-class
policy at a root-n rate. Numerical simulations show the advantage of the
proposed method over outcome modeling based benchmarks. We further demonstrate
the performance of our method in determining individualized Hemoglobin A1c
(HbA1c) control intervals for elderly patients with diabetes.
- Abstract(参考訳): 本研究では,観察データを用いた個別化線量間隔の学習問題について検討する。
継続的治療による政策学習には、以前の研究がほとんどなく、いずれも最適な線量間隔ではなく最適な線量を推奨することに焦点を当てていた。
本稿では,そのような最適な線量間隔を推定する新しい手法である確率線量間隔(pdi)を提案する。
PDIの線量に対する潜在的な結果は、所定の確率(例えば50%)で予め指定された閾値よりも良いことが保証されている。
関連する非凸最適化問題は、差分凸関数(DC)アルゴリズムによって効率的に解ける。
我々は予測した政策が一貫していることを証明し、そのリスクはトップインクラスの政策とルートnレートで収束する。
数値シミュレーションにより,結果モデリングに基づくベンチマークよりも提案手法の利点が示された。
さらに,高齢者糖尿病患者に対するヘモグロビンa1c(hba1c)制御間隔の個別化について検討した。
関連論文リスト
- Learning Robust Treatment Rules for Censored Data [14.95510487866686]
最適な治療規則を推定するための2つの基準を提案する。
既存の手法と比較して性能が向上した。
エイズの臨床データを用いた方法も提案した。
論文 参考訳(メタデータ) (2024-08-17T09:58:58Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
政策勾配法(PG法)はISの利点を大いに生かし、以前に収集したサンプルを効果的に再利用することができる。
しかし、ISは歴史的サンプルを再重み付けするための受動的ツールとしてRLに採用されている。
我々は、政策勾配のばらつきを減らすために、サンプルを収集する最良の行動ポリシーを模索する。
論文 参考訳(メタデータ) (2024-05-09T09:08:09Z) - Robust Learning for Optimal Dynamic Treatment Regimes with Observational Data [0.0]
本研究では,各段階における各個人に対する最適な治療課題を,個人の進化史に基づいて導くための最適動的治療体制(DTR)の統計的学習について検討する。
論文 参考訳(メタデータ) (2024-03-30T02:33:39Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Reliable Off-Policy Learning for Dosage Combinations [27.385663284378854]
パーソナライズド医療における意思決定は、しばしば服薬の組み合わせを選択する必要がある。
ドセージ・コンビネーションのための信頼性の高いオフ・ポリティクス学習手法を提案する。
論文 参考訳(メタデータ) (2023-05-31T11:08:43Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
本論文は,事前収集した観測値を利用して最適な個別化決定規則を学習するオフライン政策学習について検討する。
既存の政策学習法は、一様重なりの仮定、すなわち、全ての個々の特性に対する全ての作用を探索する正当性は、境界を低くしなければならない。
我々は,点推定の代わりに低信頼度境界(LCB)を最適化する新しいアルゴリズムであるPPLを提案する。
論文 参考訳(メタデータ) (2022-12-19T22:43:08Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
強化学習における高信頼行動非依存のオフ政治評価について検討する。
様々なベンチマークにおいて、信頼区間推定が既存の手法よりも厳密で精度が高いことが示されている。
論文 参考訳(メタデータ) (2020-10-22T12:39:11Z) - Kernel Assisted Learning for Personalized Dose Finding [20.52632915107782]
個別化線量規則は、患者レベル情報に基づいて、連続した安全な線量範囲内の線量レベルを推奨する。
本稿では,最適な個別化線量規則を推定するためのカーネル支援学習法を提案する。
論文 参考訳(メタデータ) (2020-07-19T23:03:26Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
本稿では,関数近似を用いたバッチデータ強化学習の統計的理論について検討する。
記録履歴から新たな対象政策の累積値を推定するオフ・ポリティクス評価問題を考察する。
論文 参考訳(メタデータ) (2020-02-21T19:20:57Z) - Multicategory Angle-based Learning for Estimating Optimal Dynamic
Treatment Regimes with Censored Data [12.499787110182632]
最適な治療体制(DTR)は、長期的な利益を最大化するための一連の決定規則から構成される。
本稿では,マルチカテゴリ処理フレームワークを用いて,最適DTRをターゲットとした新しい角度ベースアプローチを提案する。
本稿では,条件付き生存関数の最大化の観点から,提案手法が競合手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-14T05:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。