Attention-based Shape-Deformation Networks for Artifact-Free Geometry Reconstruction of Lumbar Spine from MR Images
- URL: http://arxiv.org/abs/2404.00231v3
- Date: Wed, 1 May 2024 01:47:43 GMT
- Title: Attention-based Shape-Deformation Networks for Artifact-Free Geometry Reconstruction of Lumbar Spine from MR Images
- Authors: Linchen Qian, Jiasong Chen, Linhai Ma, Timur Urakov, Weiyong Gu, Liang Liang,
- Abstract summary: We present $textitUNet-DeformSA$ and $textitTransDeformer$: novel attention-based deep neural networks that reconstruct the geometry of the lumbar spine with high spatial accuracy and mesh correspondence across patients.
Experiment results show that our networks generate artifact-free geometry outputs, and the variant of $textitTransDeformer$ can predict the errors of a reconstructed geometry.
- Score: 1.4249943098958722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lumbar disc degeneration, a progressive structural wear and tear of lumbar intervertebral disc, is regarded as an essential role on low back pain, a significant global health concern. Automated lumbar spine geometry reconstruction from MR images will enable fast measurement of medical parameters to evaluate the lumbar status, in order to determine a suitable treatment. Existing image segmentation-based techniques often generate erroneous segments or unstructured point clouds, unsuitable for medical parameter measurement. In this work, we present $\textit{UNet-DeformSA}$ and $\textit{TransDeformer}$: novel attention-based deep neural networks that reconstruct the geometry of the lumbar spine with high spatial accuracy and mesh correspondence across patients, and we also present a variant of $\textit{TransDeformer}$ for error estimation. Specially, we devise new attention modules with a new attention formula, which integrate image features and tokenized contour features to predict the displacements of the points on a shape template without the need for image segmentation. The deformed template reveals the lumbar spine geometry in an image. Experiment results show that our networks generate artifact-free geometry outputs, and the variant of $\textit{TransDeformer}$ can predict the errors of a reconstructed geometry. Our code is available at https://github.com/linchenq/TransDeformer-Mesh.
Related papers
- Deep-Motion-Net: GNN-based volumetric organ shape reconstruction from single-view 2D projections [1.8189671456038365]
We propose an end-to-end graph neural network architecture that enables 3D organ shape reconstruction during radiotherapy.
The proposed model learns the mesh regression from a patient-specific template and deep features extracted from kV images at arbitrary projection angles.
Overall framework was tested quantitatively on synthetic respiratory motion scenarios and qualitatively on in-treatment images acquired over full scan series for liver cancer patients.
arXiv Detail & Related papers (2024-07-09T09:07:18Z) - Deep Medial Voxels: Learned Medial Axis Approximations for Anatomical Shape Modeling [5.584193645582203]
We introduce deep medial voxels, a semi-implicit representation that faithfully approximates the topological skeleton from imaging volumes.
Our reconstruction technique shows potential for both visualization and computer simulations.
arXiv Detail & Related papers (2024-03-18T13:47:18Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeIT represents an anatomical structure with an implicit template field shared within the same category.
It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape.
A template Interaction Module is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes.
arXiv Detail & Related papers (2023-12-11T07:09:32Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems.
We employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation.
The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data.
arXiv Detail & Related papers (2023-06-27T14:41:18Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - Image-to-Graph Convolutional Network for Deformable Shape Reconstruction
from a Single Projection Image [0.0]
We propose an image-to-graph convolutional network (IGCN) for deformable shape reconstruction from a single-viewpoint projection image.
The IGCN learns relationship between shape/deformation variability and the deep image features based on a deformation mapping scheme.
arXiv Detail & Related papers (2021-08-28T00:00:09Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
We propose a context-aware refinement network (CAR-Net) to refine and integrate the feature pyramid representation generated by the UNet.
For keeping the structural connectivity of the brain midline, we introduce a novel connectivity regular loss.
The proposed method requires fewer parameters and outperforms three state-of-the-art methods in terms of four evaluation metrics.
arXiv Detail & Related papers (2020-07-10T14:01:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.