Facilitating Reinforcement Learning for Process Control Using Transfer Learning: Overview and Perspectives
- URL: http://arxiv.org/abs/2404.00247v3
- Date: Tue, 22 Apr 2025 13:05:04 GMT
- Title: Facilitating Reinforcement Learning for Process Control Using Transfer Learning: Overview and Perspectives
- Authors: Runze Lin, Junghui Chen, Lei Xie, Hongye Su,
- Abstract summary: The paper aims to offer a set of promising, user-friendly, easy-to-implement, and scalable approaches to artificial intelligence-facilitated industrial control for scholars and engineers in the process industry.
- Score: 10.673189535680358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of Industry 4.0 and smart manufacturing, the field of process industry optimization and control is also undergoing a digital transformation. With the rise of Deep Reinforcement Learning (DRL), its application in process control has attracted widespread attention. However, the extremely low sample efficiency and the safety concerns caused by exploration in DRL hinder its practical implementation in industrial settings. Transfer learning offers an effective solution for DRL, enhancing its generalization and adaptability in multi-mode control scenarios. This paper provides insights into the use of DRL for process control from the perspective of transfer learning. We analyze the challenges of applying DRL in the process industry and the necessity of introducing transfer learning. Furthermore, recommendations and prospects are provided for future research directions on how transfer learning can be integrated with DRL to enhance process control. This paper aims to offer a set of promising, user-friendly, easy-to-implement, and scalable approaches to artificial intelligence-facilitated industrial control for scholars and engineers in the process industry.
Related papers
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - GuideLight: "Industrial Solution" Guidance for More Practical Traffic Signal Control Agents [12.497518428553734]
Traffic signal control (TSC) methods based on reinforcement learning (RL) have proven superior to traditional methods.
However, most RL methods face difficulties when applied in the real world due to three factors: input, output, and the cycle-flow relation.
We propose to use industry solutions to guide the RL agent.
arXiv Detail & Related papers (2024-07-15T15:26:10Z) - Enhancing IoT Intelligence: A Transformer-based Reinforcement Learning Methodology [10.878954933396155]
The Internet of Things (IoT) has led to an explosion of data generated by interconnected devices.
Traditional Reinforcement Learning approaches often struggle to fully harness this data.
This paper introduces a novel framework that integrates transformer architectures with Proximal Policy Optimization.
arXiv Detail & Related papers (2024-04-05T16:30:45Z) - Hybrid Unsupervised Learning Strategy for Monitoring Industrial Batch Processes [0.0]
This paper presents a hybrid unsupervised learning strategy (HULS) for monitoring complex industrial processes.
To evaluate the performance of the HULS concept, comparative experiments are performed based on a laboratory batch.
arXiv Detail & Related papers (2024-03-19T09:33:07Z) - Digital Twin Assisted Deep Reinforcement Learning for Online Admission
Control in Sliced Network [19.152875040151976]
We propose a digital twin (DT) accelerated DRL solution to address this issue.
A neural network-based DT is established with a customized output layer for queuing systems, trained through supervised learning, and then employed to assist the training phase of the DRL model.
Extensive simulations show that the DT-accelerated DRL improves resource utilization by over 40% compared to the directly trained state-of-the-art dueling deep Q-learning model.
arXiv Detail & Related papers (2023-10-07T09:09:19Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
arXiv Detail & Related papers (2023-09-22T01:06:32Z) - A Comprehensive Survey of Deep Transfer Learning for Anomaly Detection
in Industrial Time Series: Methods, Applications, and Directions [5.759456719890725]
The monitoring of industrial processes has the potential to enhance efficiency and optimize quality.
Deep learning, with its capacity to discern non-trivial patterns within large datasets, plays a pivotal role in this process.
It is impractical to acquire large-scale labeled data for standard deep learning training for every slightly different case anew.
Deep transfer learning offers a solution to this problem.
arXiv Detail & Related papers (2023-07-11T09:37:52Z) - Prioritized Trajectory Replay: A Replay Memory for Data-driven
Reinforcement Learning [52.49786369812919]
We propose a memory technique, (Prioritized) Trajectory Replay (TR/PTR), which extends the sampling perspective to trajectories.
TR enhances learning efficiency by backward sampling of trajectories that optimize the use of subsequent state information.
We demonstrate the benefits of integrating TR and PTR with existing offline RL algorithms on D4RL.
arXiv Detail & Related papers (2023-06-27T14:29:44Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
In this paper, we study the in-context learning capabilities of transformers in decision-making problems.
We introduce and study Decision-Pretrained Transformer (DPT), a supervised pretraining method where the transformer predicts an optimal action.
We find that the pretrained transformer can be used to solve a range of RL problems in-context, exhibiting both exploration online and conservatism offline.
arXiv Detail & Related papers (2023-06-26T17:58:50Z) - Efficient Deep Reinforcement Learning Requires Regulating Overfitting [91.88004732618381]
We show that high temporal-difference (TD) error on the validation set of transitions is the main culprit that severely affects the performance of deep RL algorithms.
We show that a simple online model selection method that targets the validation TD error is effective across state-based DMC and Gym tasks.
arXiv Detail & Related papers (2023-04-20T17:11:05Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformer, originally devised for natural language processing, has also attested significant success in computer vision.
We group existing developments in two categories: architecture enhancement and trajectory optimization.
We examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving.
arXiv Detail & Related papers (2022-12-29T03:15:59Z) - Redefining Counterfactual Explanations for Reinforcement Learning:
Overview, Challenges and Opportunities [2.0341936392563063]
Most explanation methods for AI are focused on developers and expert users.
Counterfactual explanations offer users advice on what can be changed in the input for the output of the black-box model to change.
Counterfactuals are user-friendly and provide actionable advice for achieving the desired output from the AI system.
arXiv Detail & Related papers (2022-10-21T09:50:53Z) - Transferred Q-learning [79.79659145328856]
We consider $Q$-learning with knowledge transfer, using samples from a target reinforcement learning (RL) task as well as source samples from different but related RL tasks.
We propose transfer learning algorithms for both batch and online $Q$-learning with offline source studies.
arXiv Detail & Related papers (2022-02-09T20:08:19Z) - Transferring Reinforcement Learning for DC-DC Buck Converter Control via
Duty Ratio Mapping: From Simulation to Implementation [0.0]
This paper presents a transferring methodology via a delicately designed duty ratio mapping (DRM) for a DC-DC buck converter.
A detailed sim-to-real process is presented to enable the implementation of a model-free deep reinforcement learning (DRL) controller.
arXiv Detail & Related papers (2021-10-20T11:08:17Z) - Knowledge Transfer in Multi-Task Deep Reinforcement Learning for
Continuous Control [65.00425082663146]
We present a Knowledge Transfer based Multi-task Deep Reinforcement Learning framework (KTM-DRL) for continuous control.
In KTM-DRL, the multi-task agent first leverages an offline knowledge transfer algorithm to quickly learn a control policy from the experience of task-specific teachers.
The experimental results well justify the effectiveness of KTM-DRL and its knowledge transfer and online learning algorithms, as well as its superiority over the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-10-15T03:26:47Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
Reinforcement learning is a learning paradigm for solving sequential decision-making problems.
Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks.
transfer learning has arisen to tackle various challenges faced by reinforcement learning.
arXiv Detail & Related papers (2020-09-16T18:38:54Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.