Semantic Role Labeling: A Systematical Survey
- URL: http://arxiv.org/abs/2502.08660v2
- Date: Wed, 19 Feb 2025 06:32:15 GMT
- Title: Semantic Role Labeling: A Systematical Survey
- Authors: Huiyao Chen, Meishan Zhang, Jing Li, Min Zhang, Lilja Øvrelid, Jan Hajič, Hao Fei,
- Abstract summary: Semantic role labeling (SRL) is a central natural language processing (NLP) task aiming to understand the semantic roles within texts.
There is currently a lack of a comprehensive survey that thoroughly organizes and synthesizes the field.
This paper aims to review the entire research trajectory of the SRL community over the past two decades.
- Score: 43.51170121441664
- License:
- Abstract: Semantic role labeling (SRL) is a central natural language processing (NLP) task aiming to understand the semantic roles within texts, facilitating a wide range of downstream applications. While SRL has garnered extensive and enduring research, there is currently a lack of a comprehensive survey that thoroughly organizes and synthesizes the field. This paper aims to review the entire research trajectory of the SRL community over the past two decades. We begin by providing a complete definition of SRL. To offer a comprehensive taxonomy, we categorize SRL methodologies into four key perspectives: model architectures, syntax feature modeling, application scenarios, and multi-modal extensions. Further, we discuss SRL benchmarks, evaluation metrics, and paradigm modeling approaches, while also exploring practical applications across various domains. Finally, we analyze future research directions in SRL, addressing the evolving role of SRL in the age of large language models (LLMs) and its potential impact on the broader NLP landscape. We maintain a public repository and consistently update related resources at: https://github.com/DreamH1gh/Awesome-SRL
Related papers
- Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods [18.771658054884693]
Large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects such as multi-task learning, sample efficiency, and high-level task planning.
We propose a structured taxonomy to systematically categorize LLMs' functionalities in RL, including four roles: information processor, reward designer, decision-maker, and generator.
arXiv Detail & Related papers (2024-03-30T08:28:08Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
We present a novel abstraction on the dataflows of RL training, which unifies diverse RL training applications into a general framework.
We develop a scalable, efficient, and distributed RL system called ReaLly scalableRL, which allows efficient and massively parallelized training.
SRL is the first in the academic community to perform RL experiments at a large scale with over 15k CPU cores.
arXiv Detail & Related papers (2023-06-29T05:16:25Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - LCRL: Certified Policy Synthesis via Logically-Constrained Reinforcement
Learning [78.2286146954051]
LCRL implements model-free Reinforcement Learning (RL) algorithms over unknown Decision Processes (MDPs)
We present case studies to demonstrate the applicability, ease of use, scalability, and performance of LCRL.
arXiv Detail & Related papers (2022-09-21T13:21:00Z) - Transition-based Semantic Role Labeling with Pointer Networks [0.40611352512781856]
We propose the first transition-based SRL approach that is capable of completely processing an input sentence in a single left-to-right pass.
Thanks to our implementation based on Pointer Networks, full SRL can be accurately and efficiently done in $O(n2)$, achieving the best performance to date on the majority of languages from the CoNLL-2009 shared task.
arXiv Detail & Related papers (2022-05-20T08:38:44Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner.
We show how cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks.
arXiv Detail & Related papers (2022-02-09T15:01:59Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
State Representation Learning (SRL) is proposed to specifically learn to encode task-relevant features from complex sensory data into low-dimensional states.
We introduce a new SRL prior called domain resemblance to leverage expert demonstration to improve SRL interpretations.
We empirically verify POAR to efficiently handle tasks in high dimensions and facilitate training real-life robots directly from scratch.
arXiv Detail & Related papers (2021-09-17T16:52:03Z) - Deep Reinforcement Learning and Transportation Research: A Comprehensive
Review [0.0]
We offer an overview of the DRL mathematical background, popular and promising DRL algorithms, and some highly effective DRL extensions.
Building on this review, we examine the applicability, strengths, shortcomings, and common and application-specific issues of DRL techniques with regard to their applications in transportation.
arXiv Detail & Related papers (2020-10-13T05:23:11Z) - Syntax Role for Neural Semantic Role Labeling [77.5166510071142]
Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument structure of a sentence.
Previous studies in terms of traditional models have shown syntactic information can make remarkable contributions to SRL performance.
Recent neural SRL studies show that syntax information becomes much less important for neural semantic role labeling.
arXiv Detail & Related papers (2020-09-12T07:01:12Z) - RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning [108.9599280270704]
We propose a benchmark called RL Unplugged to evaluate and compare offline RL methods.
RL Unplugged includes data from a diverse range of domains including games and simulated motor control problems.
We will release data for all our tasks and open-source all algorithms presented in this paper.
arXiv Detail & Related papers (2020-06-24T17:14:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.