Rethinking Attention-Based Multiple Instance Learning for Whole-Slide Pathological Image Classification: An Instance Attribute Viewpoint
- URL: http://arxiv.org/abs/2404.00351v1
- Date: Sat, 30 Mar 2024 13:04:46 GMT
- Title: Rethinking Attention-Based Multiple Instance Learning for Whole-Slide Pathological Image Classification: An Instance Attribute Viewpoint
- Authors: Linghan Cai, Shenjin Huang, Ye Zhang, Jinpeng Lu, Yongbing Zhang,
- Abstract summary: Multiple instance learning (MIL) is a robust paradigm for whole-slide pathological image (WSI) analysis.
This paper proposes an Attribute-Driven MIL (AttriMIL) framework to address these issues.
- Score: 11.09441191807822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple instance learning (MIL) is a robust paradigm for whole-slide pathological image (WSI) analysis, processing gigapixel-resolution images with slide-level labels. As pioneering efforts, attention-based MIL (ABMIL) and its variants are increasingly becoming popular due to the characteristics of simultaneously handling clinical diagnosis and tumor localization. However, the attention mechanism exhibits limitations in discriminating between instances, which often misclassifies tissues and potentially impairs MIL performance. This paper proposes an Attribute-Driven MIL (AttriMIL) framework to address these issues. Concretely, we dissect the calculation process of ABMIL and present an attribute scoring mechanism that measures the contribution of each instance to bag prediction effectively, quantifying instance attributes. Based on attribute quantification, we develop a spatial attribute constraint and an attribute ranking constraint to model instance correlations within and across slides, respectively. These constraints encourage the network to capture the spatial correlation and semantic similarity of instances, improving the ability of AttriMIL to distinguish tissue types and identify challenging instances. Additionally, AttriMIL employs a histopathology adaptive backbone that maximizes the pre-trained model's feature extraction capability for collecting pathological features. Extensive experiments on three public benchmarks demonstrate that our AttriMIL outperforms existing state-of-the-art frameworks across multiple evaluation metrics. The implementation code is available at https://github.com/MedCAI/AttriMIL.
Related papers
- Attention Is Not What You Need: Revisiting Multi-Instance Learning for Whole Slide Image Classification [51.95824566163554]
We argue that synergizing the standard MIL assumption with variational inference encourages the model to focus on tumour morphology instead of spurious correlations.
Our method also achieves better classification boundaries for identifying hard instances and mitigates the effect of spurious correlations between bags and labels.
arXiv Detail & Related papers (2024-08-18T12:15:22Z) - cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process [23.266122629592807]
Multiple instance learning (MIL) has been extensively applied to whole slide histoparametric image (WSI) analysis.
The existing aggregation strategy in MIL, which primarily relies on the first-order distance between instances, fails to accurately approximate the true feature distribution of each instance.
We propose a new Bayesian nonparametric framework for multiple instance learning, which adopts a cascade of Dirichlet processes (cDP) to incorporate the instance-to-bag characteristic of the WSIs.
arXiv Detail & Related papers (2024-07-16T07:28:39Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
We propose a framework named MamMIL for WSI analysis.
We represent each WSI as an undirected graph.
To address the problem that Mamba can only process 1D sequences, we propose a topology-aware scanning mechanism.
arXiv Detail & Related papers (2024-03-08T09:02:13Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - The Whole Pathological Slide Classification via Weakly Supervised
Learning [7.313528558452559]
We introduce two pathological priors: nuclear disease of cells and spatial correlation of pathological tiles.
We propose a data augmentation method that utilizes stain separation during extractor training.
We then describe the spatial relationships between the tiles using an adjacency matrix.
By integrating these two views, we designed a multi-instance framework for analyzing H&E-stained tissue images.
arXiv Detail & Related papers (2023-07-12T16:14:23Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - Feature Re-calibration based MIL for Whole Slide Image Classification [7.92885032436243]
Whole slide image (WSI) classification is a fundamental task for the diagnosis and treatment of diseases.
We propose to re-calibrate the distribution of a WSI bag (instances) by using the statistics of the max-instance (critical) feature.
We employ a position encoding module (PEM) to model spatial/morphological information, and perform pooling by multi-head self-attention (PSMA) with a Transformer encoder.
arXiv Detail & Related papers (2022-06-22T07:00:39Z) - Learning from Aggregate Observations [82.44304647051243]
We study the problem of learning from aggregate observations where supervision signals are given to sets of instances.
We present a general probabilistic framework that accommodates a variety of aggregate observations.
Simple maximum likelihood solutions can be applied to various differentiable models.
arXiv Detail & Related papers (2020-04-14T06:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.