論文の概要: Language Models are Spacecraft Operators
- arxiv url: http://arxiv.org/abs/2404.00413v1
- Date: Sat, 30 Mar 2024 16:43:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 03:49:50.875800
- Title: Language Models are Spacecraft Operators
- Title(参考訳): 言語モデルは宇宙船オペレーターである
- Authors: Victor Rodriguez-Fernandez, Alejandro Carrasco, Jason Cheng, Eli Scharf, Peng Mun Siew, Richard Linares,
- Abstract要約: 大規模言語モデル(LLM)は、ユーザのテキストプロンプトの内容に基づいてアクションを行う自律エージェントである。
我々は,KSPDG(Kerbal Space Program Differential Games)チャレンジに対して,純粋なLLMベースのソリューションを開発した。
- 参考スコア(独自算出の注目度): 36.943670587532026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent trends are emerging in the use of Large Language Models (LLMs) as autonomous agents that take actions based on the content of the user text prompts. We intend to apply these concepts to the field of Guidance, Navigation, and Control in space, enabling LLMs to have a significant role in the decision-making process for autonomous satellite operations. As a first step towards this goal, we have developed a pure LLM-based solution for the Kerbal Space Program Differential Games (KSPDG) challenge, a public software design competition where participants create autonomous agents for maneuvering satellites involved in non-cooperative space operations, running on the KSP game engine. Our approach leverages prompt engineering, few-shot prompting, and fine-tuning techniques to create an effective LLM-based agent that ranked 2nd in the competition. To the best of our knowledge, this work pioneers the integration of LLM agents into space research. Code is available at https://github.com/ARCLab-MIT/kspdg.
- Abstract(参考訳): 近年,ユーザテキストプロンプトの内容に基づいて行動を起こす自律エージェントとして,Large Language Models (LLMs) が登場している。
我々は、これらの概念を宇宙の誘導、航法、制御の分野に適用し、LCMが自律衛星運用の意思決定プロセスにおいて重要な役割を果たすようにする。
この目標に向けた第一歩として、我々はKSPDG(Kerbal Space Program Differential Games)チャレンジのための純粋なLCMベースのソリューションを開発した。
提案手法は, プロンプトエンジニアリング, 数発のプロンプト, 微調整技術を利用して, 競争で2位にランクインしたLLMエージェントを効果的に作成する。
我々の知る限りでは、この研究はLLMエージェントを宇宙研究に統合する先駆的なものである。
コードはhttps://github.com/ARCLab-MIT/kspdg.comで入手できる。
関連論文リスト
- LLM-PySC2: Starcraft II learning environment for Large Language Models [16.918044347226104]
本稿では,Large Language Models(LLM)に基づく意思決定手法の開発を支援する新しい環境を提案する。
この環境はStarCraft IIのアクションスペース、マルチモーダルな観察インタフェース、構造化されたゲーム知識データベースを提供する最初のものである。
論文 参考訳(メタデータ) (2024-11-08T06:04:22Z) - Fine-tuning LLMs for Autonomous Spacecraft Control: A Case Study Using Kerbal Space Program [42.87968485876435]
本研究は、自律型宇宙船制御における微調整大型言語モデル(LLM)の利用について検討する。
これらのモデルが、言語ベースの入力と出力を用いて、宇宙船を効果的に制御する方法を実証する。
論文 参考訳(メタデータ) (2024-08-16T11:43:31Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - LLMSat: A Large Language Model-Based Goal-Oriented Agent for Autonomous Space Exploration [0.0]
本研究は,宇宙船の高レベル制御システムとしてのLarge Language Models (LLMs)の適用について検討する。
一般的なゲームエンジンであるKerbal Space Programでシミュレートされた一連の深宇宙ミッションシナリオをケーススタディとして使用し、要求に対する実装を評価する。
論文 参考訳(メタデータ) (2024-04-13T03:33:17Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
大規模言語モデル(LLM)は、幅広いタスクで大きな成功を収めています。
近年, 1 つの LLM を単一計画や意思決定エージェントとして利用する手法の開発により, 複雑な問題解決や世界シミュレーションにおいて, LLM ベースのマルチエージェントシステムは大きな進歩を遂げている。
論文 参考訳(メタデータ) (2024-01-21T23:36:14Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。