Geometric and information-theoretic aspects of quantum thermodynamics
- URL: http://arxiv.org/abs/2404.00617v1
- Date: Sun, 31 Mar 2024 09:10:03 GMT
- Title: Geometric and information-theoretic aspects of quantum thermodynamics
- Authors: A de Oliveira Junior,
- Abstract summary: I investigate what state transformations can quantum systems undergo while interacting with a thermal bath under specific constraints.
The last part of this thesis focuses on studying a ubiquitous phenomenon in science, socalled Wigisson-Cummings effect.
I will demonstrate this effect in a paradigmatic quantum optics setup, where an atom interacts with an optical cavity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this thesis, I investigate various aspects of one of the most fundamental questions in thermodynamics: what state transformations can quantum systems undergo while interacting with a thermal bath under specific constraints? These constraints may involve total energy conservation, memory effects, or finite-size considerations. Addressing this question leads to (i) a characterisation of the structure of the thermodynamic arrow of time, (ii) a framework bridging the gap between memoryless and arbitrarily non-Markovian thermodynamic processes, and (iii) a derivation of the famous fluctuation-dissipation relation within a quantum information framework. Finally, the last part of this thesis focuses on studying a ubiquitous phenomenon in science, so-called catalysis. It involves using an auxiliary system (a catalyst) to enable processes that would otherwise be impossible. Over the last two decades, this notion has spread to the field of quantum physics. However, this effect is typically described within a highly abstract framework. Despite its successes, this approach struggles to fully capture the behaviour of physically realisable systems, thereby limiting the applicability of quantum catalysis in practical scenarios. Strikingly, I will demonstrate this effect in a paradigmatic quantum optics setup, namely the Jaynes-Cummings model, where an atom interacts with an optical cavity. The atom plays the role of the catalyst and allows for the deterministic generation of non-classical light in the cavity, as evidenced by sub-Poissonian statistics or Wigner negativity.
Related papers
- Symmetries and singular behaviors with Bohmian trajectories [0.0]
This work focuses on how Bohmian mechanics proves to be a rather convenient theoretical framework to analyze phase-based phenomena.
Two interesting phenomena that take place in free space are considered, namely, the self-acceleration and shape-invariance of Airy beams, and spontaneous self-focusing.
arXiv Detail & Related papers (2024-07-10T23:58:56Z) - Quantum caloric effects [0.0]
This study focuses on deriving general expressions for caloric potentials in quantum systems.
Our results recover the classical cases and also reveal that the isothermal entropy change can be related to genuine quantum correlations in the system.
arXiv Detail & Related papers (2024-06-14T20:39:13Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - A Schmidt decomposition approach to quantum thermodynamics [0.0]
We propose a novel approach to describe the thermodynamics of arbitrary bipartite autonomous quantum systems.
This formalism provides a simple, exact and symmetrical framework for expressing the energetics between interacting systems.
arXiv Detail & Related papers (2022-05-13T22:38:56Z) - Adiabatic Dynamics and Shortcuts to Adiabaticity: Fundamentals and
Applications [0.0]
This thesis is presented a set of results in adiabatic dynamics (closed and open system) and transitionless quantum driving.
A number of theoretical applications are studied, where some theoretical prediction presented in this thesis are experimentally verified.
arXiv Detail & Related papers (2021-07-25T13:16:17Z) - Coherent and dissipative dynamics at quantum phase transitions [0.0]
Presentation is limited to issues related to, and controlled by, the quantum transition developed by closed many-body systems.
We focus on the physical conditions giving rise to a nontrivial interplay between critical modes and various dissipative mechanisms.
arXiv Detail & Related papers (2021-03-03T19:00:58Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.