論文の概要: A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures
- arxiv url: http://arxiv.org/abs/2404.00673v1
- Date: Sun, 31 Mar 2024 12:44:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 02:20:51.109392
- Title: A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures
- Title(参考訳): プライバシ保護モデル記述に関する調査--プライバシリスク,アタック,対策
- Authors: Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Thanh Toan Nguyen, Phi Le Nguyen, Hongzhi Yin, Quoc Viet Hung Nguyen,
- Abstract要約: AIのプライバシと説明可能性に関する研究が増えているにもかかわらず、プライバシを保存するモデル説明にはほとんど注意が払われていない。
本稿では,モデル説明に対するプライバシ攻撃とその対策に関する,最初の徹底的な調査を紹介する。
- 参考スコア(独自算出の注目度): 50.987594546912725
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As the adoption of explainable AI (XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorisation of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings. Interested readers are encouraged to access our repository at https://github.com/tamlhp/awesome-privex.
- Abstract(参考訳): 説明可能なAI(XAI)の採用が拡大するにつれて、そのプライバシーへの影響に対処する緊急性が高まっている。
AIのプライバシと説明可能性に関する研究が増えているにもかかわらず、プライバシを保存するモデル説明にはほとんど注意が払われていない。
本稿では,モデル説明に対するプライバシ攻撃とその対策に関する,最初の徹底的な調査を紹介する。
本分野へのコントリビューションは、対象とする説明に基づいて、プライバシ攻撃と対策の分類を容易にする、コネクテッドな分類法による研究論文の徹底的な分析を含む。
この作業には、プライバシリークの原因に関する最初の調査も含まれる。
最後に,本分析で明らかになった未解決問題と今後の研究方向性について論じる。
この調査は、研究コミュニティにとって貴重なリソースであり、この領域に新たに加わった人たちに明確な洞察を提供することを目的としている。
現在進行中の研究を支援するため,我々はオンラインリソースリポジトリを設置し,新たな,関連する知見を継続的に更新する。
興味のある読者は、https://github.com/tamlhp/awesome-privex.comで私たちのリポジトリにアクセスすることを推奨されている。
関連論文リスト
- Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
強力なAIモデルによって、幅広いタスクでパフォーマンスが飛躍的に向上した。
プライバシの懸念は、さまざまなプライバシのリスクとAIモデルの脆弱性をカバーした、豊富な文献につながっている。
我々はこれらの調査論文の体系的なレビューを行い、GPAISにおけるプライバシーリスクの簡潔かつ有用な概観を提供する。
論文 参考訳(メタデータ) (2024-07-02T07:49:48Z) - A Survey on Machine Unlearning: Techniques and New Emerged Privacy Risks [42.3024294376025]
機械学習は、プライバシー保護分野における研究ホットスポットである。
最近の研究者は、さまざまな機械学習アプローチの潜在的なプライバシー漏洩を発見した。
我々は、定義、実装方法、現実世界のアプリケーションなど、さまざまな面でプライバシーリスクを分析します。
論文 参考訳(メタデータ) (2024-06-10T11:31:04Z) - Embedding Privacy in Computational Social Science and Artificial Intelligence Research [2.048226951354646]
プライバシーの保護は研究の重要な要素として浮上している。
高度な計算モデルの利用の増加は、プライバシーの懸念を悪化させる。
この記事では、プライバシの役割と、CSS、AI、データサイエンス、および関連するドメインで働く研究者が直面する問題について議論することによって、この分野に貢献する。
論文 参考訳(メタデータ) (2024-04-17T16:07:53Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented Generation (RAG)は、プロプライエタリおよびプライベートデータによる言語モデルを容易にする強力な技術である。
本研究では,プライベート検索データベースの漏洩に対するRAGシステムの脆弱性を実証する,新たな攻撃手法による実証的研究を行う。
論文 参考訳(メタデータ) (2024-02-23T18:35:15Z) - Privacy Issues in Large Language Models: A Survey [2.707979363409351]
これは、大規模言語モデル(LLM)におけるプライバシー問題に焦点を当てたAI研究の活発な領域に関する最初の調査である。
私たちは、プライバシのリスクを強調し、トレーニングや推論プロセスにプライバシを構築しようと試み、著作権の問題を軽減するために、レッドチームでモデルを設計する作業に重点を置いています。
論文 参考訳(メタデータ) (2023-12-11T01:26:53Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Security and Privacy on Generative Data in AIGC: A Survey [17.456578314457612]
我々はAIGCにおける生成データのセキュリティとプライバシについてレビューする。
プライバシ、制御性、信頼性、コンプライアンスの基本的な性質の観点から、最先端の対策が成功した経験を明らかにする。
論文 参考訳(メタデータ) (2023-09-18T02:35:24Z) - A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and
Applications [76.88662943995641]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを扱う能力のため、大きな注目を集めている。
この問題に対処するため、研究者らはプライバシー保護のGNNの開発を開始した。
この進歩にもかかわらず、攻撃の包括的概要と、グラフドメインのプライバシを保存するためのテクニックが欠如している。
論文 参考訳(メタデータ) (2023-08-31T00:31:08Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual
Learning [76.47138162283714]
蓄積とは、以前取得した情報や知識の喪失または劣化を指す。
フォッテッティングは、深層学習における様々な研究領域でよく見られる現象である。
調査では、忘れることは二重刃の剣であり、ある場合には有益で望ましいと論じている。
論文 参考訳(メタデータ) (2023-07-16T16:27:58Z) - A Survey of Privacy Attacks in Machine Learning [0.7614628596146599]
この研究は、機械学習に対するプライバシー攻撃に関連する40以上の論文の分析である。
プライバシリークの原因についての最初の調査と、異なる攻撃の詳細な分析が紹介されている。
本稿では,最も一般的に提案されている防衛の概観と,分析において確認されたオープンな問題と今後の方向性について論じる。
論文 参考訳(メタデータ) (2020-07-15T12:09:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。