Nonparametric End-to-End Probabilistic Forecasting of Distributed Generation Outputs Considering Missing Data Imputation
- URL: http://arxiv.org/abs/2404.00729v1
- Date: Sun, 31 Mar 2024 16:17:59 GMT
- Title: Nonparametric End-to-End Probabilistic Forecasting of Distributed Generation Outputs Considering Missing Data Imputation
- Authors: Minghui Chen, Zichao Meng, Yanping Liu, Longbo Luo, Ye Guo, Kang Wang,
- Abstract summary: We introduce a nonparametric end-to-end method for probabilistic forecasting of distributed renewable generation outputs.
We design an end-to-end training process that includes missing data imputation.
- Score: 12.601429509633636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a nonparametric end-to-end method for probabilistic forecasting of distributed renewable generation outputs while including missing data imputation. Firstly, we employ a nonparametric probabilistic forecast model utilizing the long short-term memory (LSTM) network to model the probability distributions of distributed renewable generations' outputs. Secondly, we design an end-to-end training process that includes missing data imputation through iterative imputation and iterative loss-based training procedures. This two-step modeling approach effectively combines the strengths of the nonparametric method with the end-to-end approach. Consequently, our approach demonstrates exceptional capabilities in probabilistic forecasting for the outputs of distributed renewable generations while effectively handling missing values. Simulation results confirm the superior performance of our approach compared to existing alternatives.
Related papers
- Progression: an extrapolation principle for regression [0.0]
We propose a novel statistical extrapolation principle.
It assumes a simple relationship between predictors and the response at the boundary of the training predictor samples.
Our semi-parametric method, progression, leverages this extrapolation principle and offers guarantees on the approximation error beyond the training data range.
arXiv Detail & Related papers (2024-10-30T17:29:51Z) - Tackling Missing Values in Probabilistic Wind Power Forecasting: A
Generative Approach [1.384633930654651]
We propose treating missing values and forecasting targets indifferently and predicting all unknown values simultaneously.
Compared with the traditional "impute, then predict" pipeline, the proposed approach achieves better performance in terms of continuous ranked probability score.
arXiv Detail & Related papers (2024-03-06T11:38:08Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
We propose a new approach for propagating stable probability distributions through neural networks.
Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity.
arXiv Detail & Related papers (2024-02-13T09:40:19Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Scalable Dynamic Mixture Model with Full Covariance for Probabilistic
Traffic Forecasting [16.04029885574568]
We propose a dynamic mixture of zero-mean Gaussian distributions for the time-varying error process.
The proposed method can be seamlessly integrated into existing deep-learning frameworks with only a few additional parameters to be learned.
We evaluate the proposed method on a traffic speed forecasting task and find that our method not only improves model horizons but also provides interpretabletemporal correlation structures.
arXiv Detail & Related papers (2022-12-10T22:50:00Z) - Data-Driven Sample Average Approximation with Covariate Information [0.0]
We study optimization for data-driven decision-making when we have observations of the uncertain parameters within the optimization model together with concurrent observations of coparametrics.
We investigate three data-driven frameworks that integrate a machine learning prediction model within a programming sample average approximation (SAA) for approximating the solution to this problem.
arXiv Detail & Related papers (2022-07-27T14:45:04Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - A VAE-Based Bayesian Bidirectional LSTM for Renewable Energy Forecasting [0.4588028371034407]
intermittent nature of renewable energy poses new challenges to the network operational planning with underlying uncertainties.
This paper proposes a novel Bayesian probabilistic technique for forecasting renewable power generation by addressing data and model uncertainties.
It is inferred from the numerical results that VAE-Bayesian BiLSTM outperforms other probabilistic deep learning methods in terms of forecasting accuracy and computational efficiency for different sizes of the dataset.
arXiv Detail & Related papers (2021-03-24T03:47:20Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.