MTLight: Efficient Multi-Task Reinforcement Learning for Traffic Signal Control
- URL: http://arxiv.org/abs/2404.00886v1
- Date: Mon, 1 Apr 2024 03:27:46 GMT
- Title: MTLight: Efficient Multi-Task Reinforcement Learning for Traffic Signal Control
- Authors: Liwen Zhu, Peixi Peng, Zongqing Lu, Yonghong Tian,
- Abstract summary: MTLight is proposed to enhance the agent observation with a latent state, which is learned from numerous traffic indicators.
Experiments conducted on CityFlow demonstrate that MTLight has leading convergence speed and performance.
- Score: 56.545522358606924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic signal control has a great impact on alleviating traffic congestion in modern cities. Deep reinforcement learning (RL) has been widely used for this task in recent years, demonstrating promising performance but also facing many challenges such as limited performances and sample inefficiency. To handle these challenges, MTLight is proposed to enhance the agent observation with a latent state, which is learned from numerous traffic indicators. Meanwhile, multiple auxiliary and supervisory tasks are constructed to learn the latent state, and two types of embedding latent features, the task-specific feature and task-shared feature, are used to make the latent state more abundant. Extensive experiments conducted on CityFlow demonstrate that MTLight has leading convergence speed and asymptotic performance. We further simulate under peak-hour pattern in all scenarios with increasing control difficulty and the results indicate that MTLight is highly adaptable.
Related papers
- Unsupervised Representation Learning of Complex Time Series for Maneuverability State Identification in Smart Mobility [0.0]
In smart mobility, MTS plays a crucial role in providing temporal dynamics of behaviors such as maneuver patterns.
In this work, we aim to address challenges associated with modeling MTS data collected from a vehicle using sensors.
Our goal is to investigate the effectiveness of two distinct unsupervised representation learning approaches in identifying maneuvering states in smart mobility.
arXiv Detail & Related papers (2024-08-26T15:16:18Z) - MoveLight: Enhancing Traffic Signal Control through Movement-Centric Deep Reinforcement Learning [13.369840354712021]
MoveLight is a novel traffic signal control system that enhances urban traffic management through movement-centric deep reinforcement learning.
By leveraging detailed real-time data and advanced machine learning techniques, MoveLight overcomes the limitations of traditional traffic signal control methods.
arXiv Detail & Related papers (2024-07-24T14:17:16Z) - Hard Cases Detection in Motion Prediction by Vision-Language Foundation Models [16.452638202694246]
This work explores the potential of Vision-Language Foundation Models (VLMs) in detecting hard cases in autonomous driving.
We introduce a feasible pipeline where VLMs, fed with sequential image frames with designed prompts, effectively identify challenging agents or scenarios.
We show the effectiveness and feasibility of incorporating our pipeline with state-of-the-art methods on NuScenes datasets.
arXiv Detail & Related papers (2024-05-31T16:35:41Z) - MTDT: A Multi-Task Deep Learning Digital Twin [8.600701437207725]
We introduce the Multi-Task Deep Learning Digital Twin (MTDT) as a solution for multifaceted and precise intersection traffic flow simulation.
MTDT enables accurate, fine-grained estimation of loop detector waveform time series for each lane of movement.
By consolidating the learning process across multiple tasks, MTDT demonstrates reduced overfitting, increased efficiency, and enhanced effectiveness.
arXiv Detail & Related papers (2024-05-02T00:34:10Z) - TrafficMOT: A Challenging Dataset for Multi-Object Tracking in Complex
Traffic Scenarios [23.831048188389026]
Multi-object tracking in traffic videos offers immense potential for enhancing traffic monitoring accuracy and promoting road safety measures.
Existing datasets for multi-object tracking in traffic videos often feature limited instances or focus on single classes.
We introduce TrafficMOT, an extensive dataset designed to encompass diverse traffic situations with complex scenarios.
arXiv Detail & Related papers (2023-11-30T18:59:56Z) - Contrastive Example-Based Control [163.6482792040079]
We propose a method for offline, example-based control that learns an implicit model of multi-step transitions, rather than a reward function.
Across a range of state-based and image-based offline control tasks, our method outperforms baselines that use learned reward functions.
arXiv Detail & Related papers (2023-07-24T19:43:22Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly.
Current MTL regimes have to activate nearly the entire model even to just execute a single task.
We present a model-accelerator co-design framework to enable efficient on-device MTL.
arXiv Detail & Related papers (2022-10-26T15:40:24Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Learning Sparse Rewarded Tasks from Sub-Optimal Demonstrations [78.94386823185724]
Imitation learning learns effectively in sparse-rewarded tasks by leveraging the existing expert demonstrations.
In practice, collecting a sufficient amount of expert demonstrations can be prohibitively expensive.
We propose Self-Adaptive Learning (SAIL) that can achieve (near) optimal performance given only a limited number of sub-optimal demonstrations.
arXiv Detail & Related papers (2020-04-01T15:57:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.