Unsupervised Representation Learning of Complex Time Series for Maneuverability State Identification in Smart Mobility
- URL: http://arxiv.org/abs/2409.06718v1
- Date: Mon, 26 Aug 2024 15:16:18 GMT
- Title: Unsupervised Representation Learning of Complex Time Series for Maneuverability State Identification in Smart Mobility
- Authors: Thabang Lebese,
- Abstract summary: In smart mobility, MTS plays a crucial role in providing temporal dynamics of behaviors such as maneuver patterns.
In this work, we aim to address challenges associated with modeling MTS data collected from a vehicle using sensors.
Our goal is to investigate the effectiveness of two distinct unsupervised representation learning approaches in identifying maneuvering states in smart mobility.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate Time Series (MTS) data capture temporal behaviors to provide invaluable insights into various physical dynamic phenomena. In smart mobility, MTS plays a crucial role in providing temporal dynamics of behaviors such as maneuver patterns, enabling early detection of anomalous behaviors while facilitating pro-activity in Prognostics and Health Management (PHM). In this work, we aim to address challenges associated with modeling MTS data collected from a vehicle using sensors. Our goal is to investigate the effectiveness of two distinct unsupervised representation learning approaches in identifying maneuvering states in smart mobility. Specifically, we focus on some bivariate accelerations extracted from 2.5 years of driving, where the dataset is non-stationary, long, noisy, and completely unlabeled, making manual labeling impractical. The approaches of interest are Temporal Neighborhood Coding for Maneuvering (TNC4Maneuvering) and Decoupled Local and Global Representation learner for Maneuvering (DLG4Maneuvering). The main advantage of these frameworks is that they capture transferable insights in a form of representations from the data that can be effectively applied in multiple subsequent tasks, such as time-series classification, clustering, and multi-linear regression, which are the quantitative measures and qualitative measures, including visualization of representations themselves and resulting reconstructed MTS, respectively. We compare their effectiveness, where possible, in order to gain insights into which approach is more effective in identifying maneuvering states in smart mobility.
Related papers
- Siamese Multiple Attention Temporal Convolution Networks for Human Mobility Signature Identification [9.25278235266564]
We propose a Siamese Multiple Attention Temporal Convolutional Network (Siamese MA-TCN) to capitalize on the strengths of both TCN architecture and multi-head self-attention.
Experimental evaluations conducted on two real-world taxi trajectory datasets reveal that our proposed model effectively extracts both local key information and long-term dependencies.
arXiv Detail & Related papers (2024-08-17T15:27:38Z) - MTDT: A Multi-Task Deep Learning Digital Twin [8.600701437207725]
We introduce the Multi-Task Deep Learning Digital Twin (MTDT) as a solution for multifaceted and precise intersection traffic flow simulation.
MTDT enables accurate, fine-grained estimation of loop detector waveform time series for each lane of movement.
By consolidating the learning process across multiple tasks, MTDT demonstrates reduced overfitting, increased efficiency, and enhanced effectiveness.
arXiv Detail & Related papers (2024-05-02T00:34:10Z) - Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning
Approach [9.56255685195115]
Mobility profiling can extract potential patterns in urban traffic from mobility data.
Digital twin (DT) technology paves the way for cost-effective and performance-optimised management.
We propose a digital twin mobility profiling framework to learn node profiles on a mobilitytemporal network DT model.
arXiv Detail & Related papers (2024-02-06T06:37:43Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - Generalization in Visual Reinforcement Learning with the Reward Sequence
Distribution [98.67737684075587]
Generalization in partially observed markov decision processes (POMDPs) is critical for successful applications of visual reinforcement learning (VRL)
We propose the reward sequence distribution conditioned on the starting observation and the predefined subsequent action sequence (RSD-OA)
Experiments demonstrate that our representation learning approach based on RSD-OA significantly improves the generalization performance on unseen environments.
arXiv Detail & Related papers (2023-02-19T15:47:24Z) - DBT-DMAE: An Effective Multivariate Time Series Pre-Train Model under
Missing Data [16.589715330897906]
MTS suffers from missing data problems, which leads to degradation or collapse of the downstream tasks.
This paper presents a universally applicable MTS pre-train model,.
-DMAE, to conquer the abovementioned obstacle.
arXiv Detail & Related papers (2022-09-16T08:54:02Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
We propose a novel attention network, named self-modulating attention, that models the complex and non-linearly evolving dynamic user preferences.
We empirically demonstrate the effectiveness of our method on top-N sequential recommendation tasks, and the results on three large-scale real-world datasets show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-30T03:54:11Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
Self-Regulated Learning (SRL) aims to regulate the intermediate representation consecutively to produce representation that emphasizes the novel information in the frame of the current time-stamp.
SRL sharply outperforms existing state-of-the-art in most cases on two egocentric video datasets and two third-person video datasets.
arXiv Detail & Related papers (2021-11-23T03:29:18Z) - DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis [10.335486459171992]
We propose an unsupervised neural approach for mobility behavior clustering, called Deep Embedded TrajEctor ClusTering network (DETECT)
DETECT operates in three parts: first it transforms the trajectories by summarizing their critical parts and augmenting them with context derived from their geographical locality.
In the second part, it learns a powerful representation of trajectories in the latent space of behaviors, thus enabling a clustering function (such as $k$means) to be applied.
arXiv Detail & Related papers (2020-03-03T06:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.