論文の概要: Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering
- arxiv url: http://arxiv.org/abs/2312.00109v1
- Date: Thu, 30 Nov 2023 17:58:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 16:47:46.302866
- Title: Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering
- Title(参考訳): Scaffold-GS:ビュー適応レンダリングのための構造化3Dガウス
- Authors: Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin,
Bo Dai
- Abstract要約: 最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
- 参考スコア(独自算出の注目度): 71.44349029439944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural rendering methods have significantly advanced photo-realistic 3D scene
rendering in various academic and industrial applications. The recent 3D
Gaussian Splatting method has achieved the state-of-the-art rendering quality
and speed combining the benefits of both primitive-based representations and
volumetric representations. However, it often leads to heavily redundant
Gaussians that try to fit every training view, neglecting the underlying scene
geometry. Consequently, the resulting model becomes less robust to significant
view changes, texture-less area and lighting effects. We introduce Scaffold-GS,
which uses anchor points to distribute local 3D Gaussians, and predicts their
attributes on-the-fly based on viewing direction and distance within the view
frustum. Anchor growing and pruning strategies are developed based on the
importance of neural Gaussians to reliably improve the scene coverage. We show
that our method effectively reduces redundant Gaussians while delivering
high-quality rendering. We also demonstrates an enhanced capability to
accommodate scenes with varying levels-of-detail and view-dependent
observations, without sacrificing the rendering speed.
- Abstract(参考訳): ニューラルレンダリング法は、様々な学術的・産業的応用において、写真リアリスティックな3Dシーンレンダリングを著しく進歩させた。
最近の3次元ガウススメット法は,プリミティブ表現とボリューム表現の両方の利点を組み合わせた最先端のレンダリング品質と速度を実現している。
しかし、それはしばしば、基礎となるシーン幾何学を無視して、すべてのトレーニングビューに適合させようとする、非常に冗長なガウスに繋がる。
その結果, 景観変化, テクスチャのない面積, 照明効果に対するロバスト性が低下した。
我々は,局所的な3次元ガウス分布にアンカーポイントを用いるScaffold-GSを導入し,その特性を視野内の視方向と距離に基づいて予測する。
アンカー成長と刈り取り戦略は、シーンカバレッジを確実に改善するニューラルガウスの重要性に基づいて開発されている。
提案手法は,高品質なレンダリングを実現すると同時に冗長ガウスを効果的に削減することを示す。
また、レンダリング速度を犠牲にすることなく、様々なレベルのデテールとビュー依存の観察でシーンを収容する能力も強化した。
関連論文リスト
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Wild-GS: Real-Time Novel View Synthesis from Unconstrained Photo Collections [30.321151430263946]
本稿では、制約のない写真コレクションに最適化された3DGSの革新的な適応であるWild-GSについて述べる。
Wild-GSは、それぞれの3Dガウスの出現を、その固有の材料特性、大域照明と画像当たりのカメラ特性、反射率の点レベルの局所的ばらつきによって決定する。
この斬新な設計は、参照ビューの高周波詳細外観を3次元空間に効果的に転送し、トレーニングプロセスを大幅に高速化する。
論文 参考訳(メタデータ) (2024-06-14T19:06:07Z) - Bootstrap 3D Reconstructed Scenes from 3D Gaussian Splatting [10.06208115191838]
トレーニングされた3D-GSを用いて,新しいビューのレンダリングを強化するブートストラップ手法を提案する。
以上の結果から,ブートストレッピングはアーティファクトを効果的に削減し,評価指標の明確化を図っている。
論文 参考訳(メタデータ) (2024-04-29T12:57:05Z) - Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians [18.774112672831155]
3D-GSは、NeRFベースのニューラルシーン表現と比較して、顕著なレンダリングの忠実さと効率を示した。
シーン表現のためのレベル・オブ・ディーテール分解をサポートするLOD構造型3次元ガウスアプローチを特徴とするOctree-GSを提案する。
論文 参考訳(メタデータ) (2024-03-26T17:39:36Z) - SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians [2.2369578015657954]
暗黙の神経表現法は、未構造化画像から3Dシーンを学習する際、顕著な進歩を見せている。
非教師的手法でシーンオブオーダの存在を対処するために、過渡的なガウシアンを訓練する新しいメカニズムを導入する。
論文 参考訳(メタデータ) (2024-03-15T16:00:04Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
VastGaussianは3次元ガウススティングに基づく大規模シーンにおける高品質な再構成とリアルタイムレンダリングのための最初の方法である。
提案手法は既存のNeRF手法より優れており,複数の大規模シーンデータセットの最先端結果が得られる。
論文 参考訳(メタデータ) (2024-02-27T11:40:50Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian は球面調和の代わりに異方性球面ガウス場を利用するアプローチである。
実験結果から,本手法はレンダリング品質の面で既存の手法を超越していることが示された。
この改良は、3D GSの適用性を高めて、特異面と異方面の複雑なシナリオを扱う。
論文 参考訳(メタデータ) (2024-02-24T17:22:15Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
本稿では,3次元ガウススプラッティングに基づく数ショットビュー合成フレームワークを提案する。
このフレームワークは3つのトレーニングビューでリアルタイムおよびフォトリアリスティックなビュー合成を可能にする。
FSGSは、さまざまなデータセットの精度とレンダリング効率の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T09:30:02Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
本研究では,3次元ガウス点数を削減するための学習可能なマスク戦略を提案する。
また、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2023-11-22T20:31:16Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。