論文の概要: Streaming Dense Video Captioning
- arxiv url: http://arxiv.org/abs/2404.01297v1
- Date: Mon, 1 Apr 2024 17:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 21:16:45.277153
- Title: Streaming Dense Video Captioning
- Title(参考訳): ストリーミング・Dense Video Captioning
- Authors: Xingyi Zhou, Anurag Arnab, Shyamal Buch, Shen Yan, Austin Myers, Xuehan Xiong, Arsha Nagrani, Cordelia Schmid,
- Abstract要約: 濃密なビデオキャプションのための理想的なモデルは、長い入力ビデオを扱うことができ、リッチで詳細なテキスト記述を予測できる。
現在の最先端モデルは、一定の数のダウンサンプルフレームを処理し、ビデオ全体を見た後、単一の完全な予測を行う。
本稿では,2つの新しいコンポーネントからなるストリーミング高密度動画キャプションモデルを提案する。
- 参考スコア(独自算出の注目度): 85.70265343236687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An ideal model for dense video captioning -- predicting captions localized temporally in a video -- should be able to handle long input videos, predict rich, detailed textual descriptions, and be able to produce outputs before processing the entire video. Current state-of-the-art models, however, process a fixed number of downsampled frames, and make a single full prediction after seeing the whole video. We propose a streaming dense video captioning model that consists of two novel components: First, we propose a new memory module, based on clustering incoming tokens, which can handle arbitrarily long videos as the memory is of a fixed size. Second, we develop a streaming decoding algorithm that enables our model to make predictions before the entire video has been processed. Our model achieves this streaming ability, and significantly improves the state-of-the-art on three dense video captioning benchmarks: ActivityNet, YouCook2 and ViTT. Our code is released at https://github.com/google-research/scenic.
- Abstract(参考訳): 濃密な動画キャプションの理想的なモデル -- ビデオに時間的に局所化されたキャプションを予測する -- は、長い入力ビデオを処理し、リッチで詳細なテキスト記述を予測し、ビデオ全体を処理する前にアウトプットを生成することができる。
しかし現在の最先端モデルは、一定の数のダウンサンプルフレームを処理し、ビデオ全体を見た後に単一の完全な予測を行う。
本稿では,2つの新しいコンポーネントからなるストリーミング高密度ビデオキャプションモデルを提案する。まず,クラスタリングされたトークンをベースとした新しいメモリモジュールを提案する。
第2に,ビデオ全体を処理する前にモデルを予測できるストリーミング復号アルゴリズムを開発した。
我々のモデルは,このストリーミング能力を実現し,ActivityNet, YouCook2, ViTTの3つの高密度ビデオキャプションベンチマークの最先端性を大幅に向上させる。
私たちのコードはhttps://github.com/google-research/scenic.comで公開されています。
関連論文リスト
- Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning [71.94122309290537]
ビデオの高密度キャプションを生成するための,効率的なオンライン手法を提案する。
我々のモデルは、新しい自己回帰因子化復号化アーキテクチャを使用している。
提案手法は,オフライン手法とオンライン手法の両方と比較して優れた性能を示し,計算コストを20%削減する。
論文 参考訳(メタデータ) (2024-11-22T02:46:44Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2は、ビデオファウンデーションモデル(FM)の新たなファミリーで、ビデオ認識、ビデオ音声タスク、ビデオ中心タスクの最先端の結果を達成する。
私たちのコアデザインは、マスク付きビデオモデリング、クロスコントラスト学習、予測トークンを統合し、最大6Bビデオサイズまでスケールアップするプログレッシブトレーニングアプローチです。
論文 参考訳(メタデータ) (2024-03-22T17:57:42Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - MEVG: Multi-event Video Generation with Text-to-Video Models [18.06640097064693]
本稿では,ユーザから複数の個々の文が与えられた複数のイベントを示すビデオを生成する,拡散に基づく新しいビデオ生成手法を提案する。
本手法は, 微調整処理を伴わずに, 事前学習したテキスト・ビデオ生成モデルを使用するため, 大規模なビデオデータセットを必要としない。
提案手法は,コンテンツとセマンティクスの時間的コヒーレンシーの観点から,他のビデオ生成モデルよりも優れている。
論文 参考訳(メタデータ) (2023-12-07T06:53:25Z) - Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense
Video Captioning [93.6842670770983]
Vid2Seqは、ナレーション付きビデオで事前訓練されたマルチモーダルなシングルステージのイベントキャプションモデルである。
本研究では, 文境界を擬似事象境界として再構成することにより, ラベル付きナレーション付き動画を高密度映像キャプションに活用可能であることを示す。
YT-Temporal-1Bデータセットで事前トレーニングされた結果のVid2Seqモデルは、さまざまな高密度ビデオキャプションベンチマーク上でのテクニックの状態を改善する。
論文 参考訳(メタデータ) (2023-02-27T19:53:49Z) - Language Models with Image Descriptors are Strong Few-Shot
Video-Language Learners [167.0346394848718]
画像と言語モデルを用いたビデオ言語学習システムVidILを提案する。
画像言語モデルを用いて、映像コンテンツをフレームキャプション、オブジェクト、属性、イベントフレーズに変換する。
次に、いくつかのインコンテキスト例を含むプロンプトを持つ言語モデルに指示して、合成されたコンテンツからターゲット出力を生成する。
論文 参考訳(メタデータ) (2022-05-22T05:18:27Z) - Show Me What and Tell Me How: Video Synthesis via Multimodal
Conditioning [36.85533835408882]
本研究は,テキストと画像を共同あるいは別々に提供するマルチモーダルビデオ生成フレームワークを提案する。
本稿では,自己学習で訓練した新しいビデオトークンと,ビデオトークンをサンプリングするためのマスク予測アルゴリズムを提案する。
我々のフレームワークは、セグメンテーションマスク、描画、部分閉塞画像など、様々な視覚的モダリティを組み込むことができる。
論文 参考訳(メタデータ) (2022-03-04T21:09:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。