論文の概要: Block-Diagonal Guided DBSCAN Clustering
- arxiv url: http://arxiv.org/abs/2404.01341v2
- Date: Sat, 27 Apr 2024 01:34:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 22:56:04.179768
- Title: Block-Diagonal Guided DBSCAN Clustering
- Title(参考訳): ブロック対角誘導DBSCANクラスタリング
- Authors: Weibing Zhao,
- Abstract要約: クラスタ分析は、データベースマイニングにおいて重要な役割を果たす。
この分野で最も広く使われているアルゴリズムの1つはDBSCANである。
本稿では,DBSCANのクラスタリング手順をガイドするDBSCANの改良版を紹介する。
- 参考スコア(独自算出の注目度): 1.6550162152849242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cluster analysis plays a crucial role in database mining, and one of the most widely used algorithms in this field is DBSCAN. However, DBSCAN has several limitations, such as difficulty in handling high-dimensional large-scale data, sensitivity to input parameters, and lack of robustness in producing clustering results. This paper introduces an improved version of DBSCAN that leverages the block-diagonal property of the similarity graph to guide the clustering procedure of DBSCAN. The key idea is to construct a graph that measures the similarity between high-dimensional large-scale data points and has the potential to be transformed into a block-diagonal form through an unknown permutation, followed by a cluster-ordering procedure to generate the desired permutation. The clustering structure can be easily determined by identifying the diagonal blocks in the permuted graph. We propose a gradient descent-based method to solve the proposed problem. Additionally, we develop a DBSCAN-based points traversal algorithm that identifies clusters with high densities in the graph and generates an augmented ordering of clusters. The block-diagonal structure of the graph is then achieved through permutation based on the traversal order, providing a flexible foundation for both automatic and interactive cluster analysis. We introduce a split-and-refine algorithm to automatically search for all diagonal blocks in the permuted graph with theoretically optimal guarantees under specific cases. We extensively evaluate our proposed approach on twelve challenging real-world benchmark clustering datasets and demonstrate its superior performance compared to the state-of-the-art clustering method on every dataset.
- Abstract(参考訳): クラスタ分析はデータベースマイニングにおいて重要な役割を担い、この分野で最も広く使われているアルゴリズムの1つはDBSCANである。
しかし、DBSCANには、高次元の大規模データを扱うことの難しさ、入力パラメータに対する感度、クラスタリング結果の生成における堅牢性の欠如など、いくつかの制限がある。
本稿では、類似性グラフのブロック対角特性を利用してDBSCANのクラスタリング手順を導出するDBSCANの改良版を提案する。
鍵となる考え方は、高次元の大規模データポイント間の類似度を測定し、未知の置換によってブロック対角形に変換される可能性を持つグラフを構築することである。
クラスタリング構造は、置換グラフ内の対角ブロックを識別することで容易に決定できる。
そこで本研究では,勾配勾配勾配に基づく解法を提案する。
さらに,DBSCANに基づく点トラバースアルゴリズムを開発し,グラフの密度の高いクラスタを同定し,クラスタの順序付けを高速化する。
グラフのブロック対角構造は、トラバース次数に基づく置換によって達成され、自動的および対話的クラスタ分析のための柔軟な基盤を提供する。
我々は,特定の場合において理論的に最適な保証で,置換グラフ内のすべての対角ブロックを自動的に探索する分割と再定義のアルゴリズムを導入する。
実世界の12のベンチマーククラスタリングデータセットに対する提案手法を広範に評価し、各データセットの最先端クラスタリング手法と比較して優れた性能を示す。
関連論文リスト
- An SDP-based Branch-and-Cut Algorithm for Biclustering [0.0]
本稿では,二クラスタリング問題に対する分枝切断アルゴリズムを提案する。
提案アルゴリズムは汎用的な解法よりも20倍大きな解法を解くことができることを示す。
論文 参考訳(メタデータ) (2024-03-17T21:43:19Z) - MeanCut: A Greedy-Optimized Graph Clustering via Path-based Similarity
and Degree Descent Criterion [0.6906005491572401]
スペクトルクラスタリングは、優れたパフォーマンス、簡単な実装、強力な適応性のために人気があり、魅力的です。
我々は,MeanCutを目的関数として提案し,非破壊グラフ分割の次数降下順で厳密に最適化する。
本アルゴリズムの有効性は,実世界のベンチマークによる検証と顔認識の適用によって実証される。
論文 参考訳(メタデータ) (2023-12-07T06:19:39Z) - FLASC: A Flare-Sensitive Clustering Algorithm [0.0]
本稿では,クラスタ内の分岐を検知してサブポピュレーションを同定するアルゴリズムFLASCを提案する。
アルゴリズムの2つの変種が提示され、ノイズの堅牢性に対する計算コストが取引される。
両変種は計算コストの観点からHDBSCAN*と類似してスケールし,安定した出力を提供することを示す。
論文 参考訳(メタデータ) (2023-11-27T14:55:16Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
両部グラフの1ステップ正規化カットを、特に線形時間複雑性で実施する方法を示す。
本稿では、まず、正規化制約付き一段階二分グラフカット基準を特徴付けるとともに、そのトレース問題に対する等価性を理論的に証明する。
このカット基準を、適応アンカー学習、二部グラフ学習、一段階正規化二部グラフ分割を同時にモデル化するスケーラブルなサブスペースクラスタリングアプローチに拡張する。
論文 参考訳(メタデータ) (2023-05-12T11:27:20Z) - Clustering Plotted Data by Image Segmentation [12.443102864446223]
クラスタリングアルゴリズムは、ラベルなしデータのパターンを検出する主要な分析手法の1つである。
本稿では,人間のクラスタリングデータに着想を得た,2次元空間におけるクラスタリングポイントの全く異なる方法を提案する。
私たちのアプローチであるVisual Clusteringは、従来のクラスタリングアルゴリズムよりもいくつかのアドバンテージを持っています。
論文 参考訳(メタデータ) (2021-10-06T06:19:30Z) - Measuring inter-cluster similarities with Alpha Shape TRIangulation in
loCal Subspaces (ASTRICS) facilitates visualization and clustering of
high-dimensional data [0.0]
高次元(HD)データのクラスタリングと可視化は、様々な分野において重要なタスクである。
HDデータをクラスタリングする最も効果的なアルゴリズムは、グラフ内のノードによってデータを表現することに基づいている。
本稿では,HDデータポイントのクラスタ間の類似性を計測するASTRICSという手法を提案する。
論文 参考訳(メタデータ) (2021-07-15T20:51:06Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z) - Conjoined Dirichlet Process [63.89763375457853]
我々はディリクレ過程に基づく新しい非パラメトリック確率的ビクラスタリング法を開発し、列と列の双方に強い共起を持つビクラスタを同定する。
本手法はテキストマイニングと遺伝子発現解析の2つの異なる応用に適用し,既存の手法に比べて多くの設定でビクラスタ抽出を改善することを示す。
論文 参考訳(メタデータ) (2020-02-08T19:41:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。