ADVREPAIR:Provable Repair of Adversarial Attack
- URL: http://arxiv.org/abs/2404.01642v1
- Date: Tue, 2 Apr 2024 05:16:59 GMT
- Title: ADVREPAIR:Provable Repair of Adversarial Attack
- Authors: Zhiming Chi, Jianan Ma, Pengfei Yang, Cheng-Chao Huang, Renjue Li, Xiaowei Huang, Lijun Zhang,
- Abstract summary: Deep neural networks (DNNs) are increasingly deployed in safety-critical domains, but their vulnerability to adversarial attacks poses serious safety risks.
Existing neuron-level methods using limited data lack efficacy in fixing adversaries due to the complexity of adversarial attack mechanisms.
We propose ADVREPAIR, a novel approach for provable repair of adversarial attacks using limited data.
- Score: 15.580097790702508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are increasingly deployed in safety-critical domains, but their vulnerability to adversarial attacks poses serious safety risks. Existing neuron-level methods using limited data lack efficacy in fixing adversaries due to the inherent complexity of adversarial attack mechanisms, while adversarial training, leveraging a large number of adversarial samples to enhance robustness, lacks provability. In this paper, we propose ADVREPAIR, a novel approach for provable repair of adversarial attacks using limited data. By utilizing formal verification, ADVREPAIR constructs patch modules that, when integrated with the original network, deliver provable and specialized repairs within the robustness neighborhood. Additionally, our approach incorporates a heuristic mechanism for assigning patch modules, allowing this defense against adversarial attacks to generalize to other inputs. ADVREPAIR demonstrates superior efficiency, scalability and repair success rate. Different from existing DNN repair methods, our repair can generalize to general inputs, thereby improving the robustness of the neural network globally, which indicates a significant breakthrough in the generalization capability of ADVREPAIR.
Related papers
- Real-world Adversarial Defense against Patch Attacks based on Diffusion Model [34.86098237949215]
This paper introduces DIFFender, a novel DIFfusion-based DeFender framework to counter adversarial patch attacks.
At the core of our approach is the discovery of the Adversarial Anomaly Perception (AAP) phenomenon.
DIFFender seamlessly integrates the tasks of patch localization and restoration within a unified diffusion model framework.
arXiv Detail & Related papers (2024-09-14T10:38:35Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
We analyze attack techniques and propose a robust defense approach.
We successfully reduce model confidence by over 20% using adversarial patch attacks that exploit object shape, texture and position.
Our inpainting defense approach significantly enhances model resilience, achieving high accuracy and reliable localization despite the adversarial attacks.
arXiv Detail & Related papers (2024-03-04T13:32:48Z) - FACADE: A Framework for Adversarial Circuit Anomaly Detection and
Evaluation [9.025997629442896]
FACADE is designed for unsupervised mechanistic anomaly detection in deep neural networks.
Our approach seeks to improve model robustness, enhance scalable model oversight, and demonstrates promising applications in real-world deployment settings.
arXiv Detail & Related papers (2023-07-20T04:00:37Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - A Data Augmentation-based Defense Method Against Adversarial Attacks in
Neural Networks [7.943024117353317]
We develop a lightweight defense method that can efficiently invalidate full whitebox adversarial attacks with the compatibility of real-life constraints.
Our model can withstand advanced adaptive attack, namely BPDA with 50 rounds, and still helps the target model maintain an accuracy around 80 %, meanwhile constraining the attack success rate to almost zero.
arXiv Detail & Related papers (2020-07-30T08:06:53Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.