Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions
- URL: http://arxiv.org/abs/2409.09778v1
- Date: Sun, 15 Sep 2024 15:58:08 GMT
- Title: Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions
- Authors: Siqiao Mu, Diego Klabjan,
- Abstract summary: Machine unlearning algorithms aim to efficiently data from a model without it from scratch, in order to enforce data privacy, remove corrupted or outdated data, or respect a user's right to forgotten"
Our algorithm is black-box, in that it be directly applied to models with vanilla gradient descent with no prior consideration of unlearning.
- Score: 11.955062839855334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning algorithms aim to efficiently remove data from a model without retraining it from scratch, in order to enforce data privacy, remove corrupted or outdated data, or respect a user's ``right to be forgotten." Certified machine unlearning is a strong theoretical guarantee that quantifies the extent to which data is erased from the model weights. Most prior works in certified unlearning focus on models trained on convex or strongly convex loss functions, which benefit from convenient convergence guarantees and the existence of global minima. For nonconvex objectives, existing algorithms rely on limiting assumptions and expensive computations that hinder practical implementations. In this work, we propose a simple first-order algorithm for unlearning on general nonconvex loss functions which unlearns by ``rewinding" to an earlier step during the learning process and then performs gradient descent on the loss function of the retained data points. Our algorithm is black-box, in that it can be directly applied to models pretrained with vanilla gradient descent with no prior consideration of unlearning. We prove $(\epsilon, \delta)$ certified unlearning and performance guarantees that establish the privacy-utility-complexity tradeoff of our algorithm, with special consideration for nonconvex functions that satisfy the Polyak-Lojasiewicz inequality.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Efficient and Generalizable Certified Unlearning: A Hessian-free Recollection Approach [8.875278412741695]
Machine unlearning strives to uphold the data owners' right to be forgotten by enabling models to selectively forget specific data.
We develop an algorithm that achieves near-instantaneous unlearning as it only requires a vector addition operation.
arXiv Detail & Related papers (2024-04-02T07:54:18Z) - Loss-Free Machine Unlearning [51.34904967046097]
We present a machine unlearning approach that is both retraining- and label-free.
Retraining-free approaches often utilise Fisher information, which is derived from the loss and requires labelled data which may not be available.
We present an extension to the Selective Synaptic Dampening algorithm, substituting the diagonal of the Fisher information matrix for the gradient of the l2 norm of the model output to approximate sensitivity.
arXiv Detail & Related papers (2024-02-29T16:15:34Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Forget Unlearning: Towards True Data-Deletion in Machine Learning [18.656957502454592]
We show that unlearning is not equivalent to data deletion and does not guarantee the "right to be forgotten"
We propose an accurate, computationally efficient, and secure data-deletion machine learning algorithm in the online setting.
arXiv Detail & Related papers (2022-10-17T10:06:11Z) - Algorithms that Approximate Data Removal: New Results and Limitations [2.6905021039717987]
We study the problem of deleting user data from machine learning models trained using empirical risk minimization.
We develop an online unlearning algorithm that is both computationally and memory efficient.
arXiv Detail & Related papers (2022-09-25T17:20:33Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.