Safe Interval RRT* for Scalable Multi-Robot Path Planning in Continuous Space
- URL: http://arxiv.org/abs/2404.01752v3
- Date: Tue, 11 Feb 2025 13:46:36 GMT
- Title: Safe Interval RRT* for Scalable Multi-Robot Path Planning in Continuous Space
- Authors: Joonyeol Sim, Joonkyung Kim, Changjoo Nam,
- Abstract summary: We consider the problem of Multi-Robot Path Planning (MRPP) in continuous space.<n>We propose a two-level approach where the low level is a sampling-based planner Safe Interval RRT* (SI-RRT*) that finds a collision-free trajectory for individual robots.
- Score: 4.678150356894013
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we consider the problem of Multi-Robot Path Planning (MRPP) in continuous space. The difficulty of the problem arises from the extremely large search space caused by the combinatorial nature of the problem and the continuous state space. We propose a two-level approach where the low level is a sampling-based planner Safe Interval RRT* (SI-RRT*) that finds a collision-free trajectory for individual robots. The high level can use any method that can resolve inter-robot conflicts where we employ two representative methods that are Prioritized Planning (SI-CPP) and Conflict Based Search (SI-CCBS). Experimental results show that SI-RRT* can quickly find a high-quality solution with a few samples. SI-CPP exhibits improved scalability while SI-CCBS produces higher-quality solutions compared to the state-of-the-art planners for continuous space.
Related papers
- Reinforcement learning with combinatorial actions for coupled restless bandits [62.89013331120493]
We propose SEQUOIA, an RL algorithm that directly optimize for long-term reward over the feasible action space.
We empirically validate SEQUOIA on four novel restless bandit problems with constraints: multiple interventions, path constraints, bipartite matching, and capacity constraints.
arXiv Detail & Related papers (2025-03-01T21:25:21Z) - Risk-aware Integrated Task and Motion Planning for Versatile Snake Robots under Localization Failures [6.250953826294371]
Snake robots enable mobility through extreme terrains and confined environments in terrestrial and space applications.
To address this issue, we propose Blind-motion with Intermittently Scheduled Scans (BLISS)
BLISS combines proprioception-only mobility with intermittent scans to be resilient against both localization failures and collision risks.
arXiv Detail & Related papers (2025-02-27T02:02:51Z) - Large-Scale Multi-Robot Coverage Path Planning on Grids with Path Deconfliction [2.5580729045474015]
We study Multi-Robot Coverage Path Planning (MCPP) on a 4-neighbor 2D grid G, which aims to compute paths for multiple robots to cover all cells of G.
We reformulate the problem directly on G, revolutionizing grid-based MCPP solving and establishing new NP-hardness results.
We show that our approach significantly improves solution quality and efficiency, managing up to 100 robots on grids as large as 256x256 within minutes of runtime.
arXiv Detail & Related papers (2024-11-03T22:37:56Z) - Learning a Fast Mixing Exogenous Block MDP using a Single Trajectory [87.62730694973696]
STEEL is the first provably sample-efficient algorithm for learning the controllable dynamics of an Exogenous Block Markov Decision Process from a single trajectory.
We prove that STEEL is correct and sample-efficient, and demonstrate STEEL on two toy problems.
arXiv Detail & Related papers (2024-10-03T21:57:21Z) - Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
Unlabeled motion planning involves assigning a set of robots to target locations while ensuring collision avoidance.
This problem forms an essential building block for multi-robot systems in applications such as exploration, surveillance, and transportation.
We address this problem in a decentralized setting where each robot knows only the positions of its $k$-nearest robots and $k$-nearest targets.
arXiv Detail & Related papers (2024-09-29T23:57:25Z) - Multi-agent Path Finding in Continuous Environment [11.325849006178737]
A new Continuous Environment Conflict-Based Search (CE-CBS) algorithm is proposed in this work.
CE-CBS combines conflict-based search (CBS) for the high-level search framework with RRT* for low-level path planning.
Experimental results show that CE-CBS is competitive w.r.t. to other algorithms that consider continuous aspect in MAPF with continuous time.
arXiv Detail & Related papers (2024-09-16T19:23:04Z) - Robust Stochastic Shortest-Path Planning via Risk-Sensitive Incremental Sampling [9.651071174735804]
We propose a risk-aware Rapidly-Exploring Random Trees (RRT*) planning algorithm for Shortest-Path (SSP) problems.
Our motivation rests on the step-wise coherence of the Conditional Value-at-Risk (CVaR) risk measure and the optimal substructure of the SSP problem.
Our simulation results show that incorporating risk into the tree growth process yields paths with lengths that are significantly less sensitive to variations in the noise parameter.
arXiv Detail & Related papers (2024-08-16T11:21:52Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - DC-MRTA: Decentralized Multi-Robot Task Allocation and Navigation in
Complex Environments [55.204450019073036]
We present a novel reinforcement learning based task allocation and decentralized navigation algorithm for mobile robots in warehouse environments.
We consider the problem of joint decentralized task allocation and navigation and present a two level approach to solve it.
We observe improvement up to 14% in terms of task completion time and up-to 40% improvement in terms of computing collision-free trajectories for the robots.
arXiv Detail & Related papers (2022-09-07T00:35:27Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
The goal is to maximize the sum-rate of whole trajectories for multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots.
An integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D$3$QN) algorithm.
arXiv Detail & Related papers (2022-05-03T17:14:47Z) - Distributed Swarm Collision Avoidance Based on Angular Calculations [0.0]
In this paper, a distributed and real-time algorithm for dense and complex 2D and 3D environments is proposed.
It uses angular calculations to select the optimal direction for the movement of each robot.
The proposed method is shown to enable fully autonomous navigation of a swarm of crazyflies.
arXiv Detail & Related papers (2021-08-29T23:12:38Z) - STRIDE along Spectrahedral Vertices for Solving Large-Scale Rank-One
Semidefinite Relaxations [27.353023427198806]
We consider solving high-order semidefinite programming relaxations of nonconstrained optimization problems (POPs)
Existing approaches, which solve the SDP independently from the POP, either cannot scale to large problems or suffer from slow convergence due to the typical uneneracy of such SDPs.
We propose a new algorithmic framework called SpecTrahedral vErtices (STRIDE)
arXiv Detail & Related papers (2021-05-28T18:07:16Z) - Two-Stage Stochastic Optimization via Primal-Dual Decomposition and Deep
Unrolling [86.85697555068168]
Two-stage algorithmic optimization plays a critical role in various engineering and scientific applications.
There still lack efficient algorithms, especially when the long-term and short-term variables are coupled in the constraints.
We show that PDD-SSCA can achieve superior performance over existing solutions.
arXiv Detail & Related papers (2021-05-05T03:36:00Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.