A Rationale-centric Counterfactual Data Augmentation Method for Cross-Document Event Coreference Resolution
- URL: http://arxiv.org/abs/2404.01921v2
- Date: Wed, 8 May 2024 04:07:35 GMT
- Title: A Rationale-centric Counterfactual Data Augmentation Method for Cross-Document Event Coreference Resolution
- Authors: Bowen Ding, Qingkai Min, Shengkun Ma, Yingjie Li, Linyi Yang, Yue Zhang,
- Abstract summary: We formalize the decision-making process of the baseline ECR system using a Structural Causal Model (SCM)
We develop a rationale-centric counterfactual data augmentation method with LLM-in-the-loop.
Our approach achieves state-of-the-art performance on three popular cross-document ECR benchmarks and demonstrates robustness in out-of-domain scenarios.
- Score: 29.34028569245905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Based on Pre-trained Language Models (PLMs), event coreference resolution (ECR) systems have demonstrated outstanding performance in clustering coreferential events across documents. However, the existing system exhibits an excessive reliance on the `triggers lexical matching' spurious pattern in the input mention pair text. We formalize the decision-making process of the baseline ECR system using a Structural Causal Model (SCM), aiming to identify spurious and causal associations (i.e., rationales) within the ECR task. Leveraging the debiasing capability of counterfactual data augmentation, we develop a rationale-centric counterfactual data augmentation method with LLM-in-the-loop. This method is specialized for pairwise input in the ECR system, where we conduct direct interventions on triggers and context to mitigate the spurious association while emphasizing the causation. Our approach achieves state-of-the-art performance on three popular cross-document ECR benchmarks and demonstrates robustness in out-of-domain scenarios.
Related papers
- Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval [49.076590578101985]
We present a diffusion-based ATR framework (DiffATR) that generates joint distribution from noise.
Experiments on the AudioCaps and Clotho datasets with superior performances, verify the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-16T06:33:26Z) - Making Large Language Models Better Planners with Reasoning-Decision Alignment [70.5381163219608]
We motivate an end-to-end decision-making model based on multimodality-augmented LLM.
We propose a reasoning-decision alignment constraint between the paired CoTs and planning results.
We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver.
arXiv Detail & Related papers (2024-08-25T16:43:47Z) - Crossmodal ASR Error Correction with Discrete Speech Units [16.58209270191005]
We propose a post-ASR processing approach for ASR Error Correction (AEC)
We explore pre-training and fine-tuning strategies and uncover an ASR domain discrepancy phenomenon.
We propose the incorporation of discrete speech units to align with and enhance the word embeddings for improving AEC quality.
arXiv Detail & Related papers (2024-05-26T19:58:38Z) - DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and
Improvement of Large Language Models [4.953092503184905]
This work proposes DCR, an automated framework for evaluating and improving the consistency of Large Language Models (LLMs) generated texts.
We introduce an automatic metric converter (AMC) that translates the output from DCE into an interpretable numeric score.
Our approach also substantially reduces nearly 90% of output inconsistencies, showing promise for effective hallucination mitigation.
arXiv Detail & Related papers (2024-01-04T08:34:16Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
We propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX.
REX introduces an additional layer of rewards and integrates concepts similar to Upper Confidence Bound (UCB) scores, leading to more robust and efficient AI agent performance.
arXiv Detail & Related papers (2023-07-18T04:26:33Z) - Reasoning over Hybrid Chain for Table-and-Text Open Domain QA [69.8436986668218]
We propose a ChAin-centric Reasoning and Pre-training framework (CARP)
CARP utilizes hybrid chain to model the explicit intermediate reasoning process across table and text for question answering.
We also propose a novel chain-centric pre-training method, to enhance the pre-trained model in identifying the cross-modality reasoning process.
arXiv Detail & Related papers (2022-01-15T16:11:55Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.