Argument-Centric Causal Intervention Method for Mitigating Bias in Cross-Document Event Coreference Resolution
- URL: http://arxiv.org/abs/2506.01488v1
- Date: Mon, 02 Jun 2025 09:46:59 GMT
- Title: Argument-Centric Causal Intervention Method for Mitigating Bias in Cross-Document Event Coreference Resolution
- Authors: Long Yao, Wenzhong Yang, Yabo Yin, Fuyuan Wei, Hongzhen Lv, Jiaren Peng, Liejun Wang, Xiaoming Tao,
- Abstract summary: Cross-document Event Coreference Resolution (CD-ECR) seeks to determine whether event mentions across multiple documents refer to the same real-world occurrence.<n>We propose a novel method based on Argument-Centric Causal Intervention (ACCI)<n>ACCI integrates a counterfactual reasoning module that quantifies the causal influence of trigger word perturbations, and an argument-aware enhancement module to promote greater sensitivity to semantically grounded information.
- Score: 12.185497507437555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-document Event Coreference Resolution (CD-ECR) is a fundamental task in natural language processing (NLP) that seeks to determine whether event mentions across multiple documents refer to the same real-world occurrence. However, current CD-ECR approaches predominantly rely on trigger features within input mention pairs, which induce spurious correlations between surface-level lexical features and coreference relationships, impairing the overall performance of the models. To address this issue, we propose a novel cross-document event coreference resolution method based on Argument-Centric Causal Intervention (ACCI). Specifically, we construct a structural causal graph to uncover confounding dependencies between lexical triggers and coreference labels, and introduce backdoor-adjusted interventions to isolate the true causal effect of argument semantics. To further mitigate spurious correlations, ACCI integrates a counterfactual reasoning module that quantifies the causal influence of trigger word perturbations, and an argument-aware enhancement module to promote greater sensitivity to semantically grounded information. In contrast to prior methods that depend on costly data augmentation or heuristic-based filtering, ACCI enables effective debiasing in a unified end-to-end framework without altering the underlying training procedure. Extensive experiments demonstrate that ACCI achieves CoNLL F1 of 88.4% on ECB+ and 85.2% on GVC, achieving state-of-the-art performance. The implementation and materials are available at https://github.com/era211/ACCI.
Related papers
- Cross-Modal Dual-Causal Learning for Long-Term Action Recognition [0.0]
Long-term action recognition (LTAR) is challenging due to extended temporal spans with complex atomic action correlations and visual confounders.<n>This paper proposes a structural causal model to uncover causal relationships between videos and label texts.
arXiv Detail & Related papers (2025-07-09T07:22:54Z) - AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning [61.28113271728859]
RAG has become a widely adopted paradigm for enabling knowledge-grounded large language models (LLMs)<n>Standard RAG pipelines often fail to ensure that model reasoning remains consistent with the evidence retrieved, leading to factual inconsistencies or unsupported conclusions.<n>In this work, we reinterpret RAG as Retrieval-Augmented Reasoning and identify a central but underexplored problem: textitReasoning Misalignment.
arXiv Detail & Related papers (2025-04-21T04:56:47Z) - ACCESS : A Benchmark for Abstract Causal Event Discovery and Reasoning [47.540945048737434]
We introduce textttACCESS, a benchmark designed for discovery and reasoning over abstract causal events.<n>We propose a pipeline for identifying abstractions for event generalizations from a large-scale dataset of implicit commonsense causal knowledge.
arXiv Detail & Related papers (2025-02-12T06:19:02Z) - Fighting Spurious Correlations in Text Classification via a Causal Learning Perspective [2.7813683000222653]
We propose the Causally Calibrated Robust ( CCR) to reduce models' reliance on spurious correlations.<n> CCR integrates a causal feature selection method based on counterfactual reasoning, along with an inverse propensity weighting (IPW) loss function.<n>We show that CCR state-of-the-art performance among methods without group labels, and in some cases, it can compete with the models that utilize group labels.
arXiv Detail & Related papers (2024-11-01T21:29:07Z) - A Rationale-centric Counterfactual Data Augmentation Method for Cross-Document Event Coreference Resolution [29.34028569245905]
We formalize the decision-making process of the baseline ECR system using a Structural Causal Model (SCM)
We develop a rationale-centric counterfactual data augmentation method with LLM-in-the-loop.
Our approach achieves state-of-the-art performance on three popular cross-document ECR benchmarks and demonstrates robustness in out-of-domain scenarios.
arXiv Detail & Related papers (2024-04-02T13:15:07Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
arXiv Detail & Related papers (2023-08-24T16:06:36Z) - Causal Document-Grounded Dialogue Pre-training [81.16429056652483]
We present a causally-complete dataset construction strategy for building million-level DocGD pre-training corpora.
Experiments on three benchmark datasets demonstrate that our causal pre-training achieves considerable and consistent improvements under fully-supervised, low-resource, few-shot, and zero-shot settings.
arXiv Detail & Related papers (2023-05-18T12:39:25Z) - How to Enhance Causal Discrimination of Utterances: A Case on Affective
Reasoning [22.11437627661179]
We propose the incorporation of textiti.i.i.d. noise terms into the conversation process, thereby constructing a structural causal model (SCM)
To facilitate the implementation of deep learning, we introduce the cogn frameworks to handle unstructured conversation data, and employ an autoencoder architecture to regard the unobservable noise as learnable "implicit causes"
arXiv Detail & Related papers (2023-05-04T07:45:49Z) - Causal Disentangled Variational Auto-Encoder for Preference
Understanding in Recommendation [50.93536377097659]
This paper introduces the Causal Disentangled Variational Auto-Encoder (CaD-VAE), a novel approach for learning causal disentangled representations from interaction data in recommender systems.
The approach utilizes structural causal models to generate causal representations that describe the causal relationship between latent factors.
arXiv Detail & Related papers (2023-04-17T00:10:56Z) - FECANet: Boosting Few-Shot Semantic Segmentation with Feature-Enhanced
Context-Aware Network [48.912196729711624]
Few-shot semantic segmentation is the task of learning to locate each pixel of a novel class in a query image with only a few annotated support images.
We propose a Feature-Enhanced Context-Aware Network (FECANet) to suppress the matching noise caused by inter-class local similarity.
In addition, we propose a novel correlation reconstruction module that encodes extra correspondence relations between foreground and background and multi-scale context semantic features.
arXiv Detail & Related papers (2023-01-19T16:31:13Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.