NCIDiff: Non-covalent Interaction-generative Diffusion Model for Improving Reliability of 3D Molecule Generation Inside Protein Pocket
- URL: http://arxiv.org/abs/2405.16861v1
- Date: Mon, 27 May 2024 06:26:55 GMT
- Title: NCIDiff: Non-covalent Interaction-generative Diffusion Model for Improving Reliability of 3D Molecule Generation Inside Protein Pocket
- Authors: Joongwon Lee, Wonho Zhung, Woo Youn Kim,
- Abstract summary: Non-covalent patterns (NCIs) are universal patterns throughout protein-ligand complexes.
Our proposed model, NCIDiff, simultaneously denoises NCI types of protein-ligand edges along with a 3D graph of a ligand molecule during the sampling.
With the NCI-generating strategy, our model generates reliable NCIs especially outperforming the baseline diffusion-based models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in deep generative modeling have changed the paradigm of drug discovery. Among such approaches, target-aware methods that exploit 3D structures of protein pockets were spotlighted for generating ligand molecules with their plausible binding modes. While docking scores superficially assess the quality of generated ligands, closer inspection of the binding structures reveals the inconsistency in local interactions between a pocket and generated ligands. Here, we address the issue by explicitly generating non-covalent interactions (NCIs), which are universal patterns throughout protein-ligand complexes. Our proposed model, NCIDiff, simultaneously denoises NCI types of protein-ligand edges along with a 3D graph of a ligand molecule during the sampling. With the NCI-generating strategy, our model generates ligands with more reliable NCIs, especially outperforming the baseline diffusion-based models. We further adopted inpainting techniques on NCIs to further improve the quality of the generated molecules. Finally, we showcase the applicability of NCIDiff on drug design tasks for real-world settings with specialized objectives by guiding the generation process with desired NCI patterns.
Related papers
- A Generalist Cross-Domain Molecular Learning Framework for Structure-Based Drug Discovery [32.573496601865465]
Structure-based drug discovery (SBDD) is a systematic scientific process that develops new drugs by leveraging the detailed physical structure of the target protein.
Recent advancements in pre-trained models for biomolecules have demonstrated remarkable success across various biochemical applications.
arXiv Detail & Related papers (2025-03-06T12:04:56Z) - Molecule Generation for Target Protein Binding with Hierarchical Consistency Diffusion Model [17.885767456439215]
Atom-Motif Consistency Diffusion Model (AMDiff) is a hierarchical diffusion architecture that integrates both atom- and motif-level views of molecules.
Compared to existing approaches, AMDiff exhibits superior validity and novelty in generating molecules tailored to fit various protein pockets.
arXiv Detail & Related papers (2025-03-02T17:54:30Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design [81.95343363178662]
atoms must maintain a minimum pairwise distance to avoid separation violations.
NucleusDiff models the interactions between atomic nuclei and their surrounding electron clouds by enforcing the distance constraint.
It reduces violation rate by up to 1000% and enhances binding affinity by up to 22.16%, surpassing state-of-the-art models for structure-based drug design.
arXiv Detail & Related papers (2024-09-16T08:42:46Z) - Multiview Random Vector Functional Link Network for Predicting DNA-Binding Proteins [0.0]
We propose a novel framework termed a multiview random vector functional link (MvRVFL) network, which fuses neural network architecture with multiview learning.
The proposed MvRVFL model combines the benefits of late and early fusion, allowing for distinct regularization parameters across different views.
The performance of the proposed MvRVFL model on the DBP dataset surpasses that of baseline models, demonstrating its superior effectiveness.
arXiv Detail & Related papers (2024-09-04T10:14:17Z) - A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
Deep generative modeling techniques have been employed to generate novel protein conformations.
We propose a force-guided SE(3) diffusion model, ConfDiff, for protein conformation generation.
arXiv Detail & Related papers (2024-03-21T02:44:08Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure [0.0]
Diffusion generative models operate directly on 3D molecular structures.
We present a novel GNN-based architecture for learning latent representations of molecular structure.
Our model achieves comparable performance to one with an all-atom protein representation while exhibiting a 3-fold reduction in inference time.
arXiv Detail & Related papers (2023-11-22T15:32:31Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - Leveraging Side Information for Ligand Conformation Generation using
Diffusion-Based Approaches [12.71967232020327]
Ligand molecule conformation generation is a critical challenge in drug discovery.
Deep learning models have been developed to tackle this problem.
These models often generate conformations that lack meaningful structure and randomness due to the absence of essential side information.
arXiv Detail & Related papers (2023-08-02T09:56:47Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
Structure-based drug design (SBDD) leverages the three-dimensional geometry of proteins to identify potential drug candidates.
Recent advancements in geometric deep learning, which effectively integrate and process 3D geometric data, have significantly propelled the field forward.
arXiv Detail & Related papers (2023-06-20T14:21:58Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one.
In real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms.
In this work, a generative diffusion model for molecular 3D structures based on target proteins is established, at a full-atom level in a non-autoregressive way.
arXiv Detail & Related papers (2022-11-21T07:02:15Z) - Structure-based Drug Design with Equivariant Diffusion Models [40.73626627266543]
We present DiffSBDD, an SE(3)-equivariant diffusion model that generates novel conditioned on protein pockets.
Our in silico experiments demonstrate that DiffSBDD captures the statistics of the ground truth data effectively.
These results support the assumption that diffusion models represent the complex distribution of structural data more accurately than previous methods.
arXiv Detail & Related papers (2022-10-24T15:51:21Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
Structure-based de novo method can overcome the data scarcity of active by incorporating drug-target interaction into deep generative architectures.
Here, we demonstrate a widely used and fast protein sequence-based reinforcement learning model for drug discovery.
As a proof of concept, the RL model was utilized to design molecules for four targets.
arXiv Detail & Related papers (2022-08-14T10:41:52Z) - In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative
Small-Molecule Creation [0.0]
We present a graph-based generative modeling technology that encodes explicit 3D protein-ligand contacts within a relational graph architecture.
The models combine a conditional variational autoencoder that allows for activity-specific molecule generation with putative contact generation that provides predictions of molecular interactions within the target binding pocket.
arXiv Detail & Related papers (2022-04-05T22:53:51Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.