論文の概要: Large Language Models for Orchestrating Bimanual Robots
- arxiv url: http://arxiv.org/abs/2404.02018v1
- Date: Tue, 2 Apr 2024 15:08:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 15:59:17.609004
- Title: Large Language Models for Orchestrating Bimanual Robots
- Title(参考訳): 双方向ロボットのオーケストレーションのための大規模言語モデル
- Authors: Kun Chu, Xufeng Zhao, Cornelius Weber, Mengdi Li, Wenhao Lu, Stefan Wermter,
- Abstract要約: 大型言語モデル (LLM) は様々なロボットタスクを制御している。
しかし、連続空間におけるコーディネートは双対問題にとって特に困難である。
本稿では,Language-based Bimanual Orchestration (LABOR)を提案する。
- 参考スコア(独自算出の注目度): 19.60907949776435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although there has been rapid progress in endowing robots with the ability to solve complex manipulation tasks, generating control policies for bimanual robots to solve tasks involving two hands is still challenging because of the difficulties in effective temporal and spatial coordination. With emergent abilities in terms of step-by-step reasoning and in-context learning, Large Language Models (LLMs) have taken control of a variety of robotic tasks. However, the nature of language communication via a single sequence of discrete symbols makes LLM-based coordination in continuous space a particular challenge for bimanual tasks. To tackle this challenge for the first time by an LLM, we present LAnguage-model-based Bimanual ORchestration (LABOR), an agent utilizing an LLM to analyze task configurations and devise coordination control policies for addressing long-horizon bimanual tasks. In the simulated environment, the LABOR agent is evaluated through several everyday tasks on the NICOL humanoid robot. Reported success rates indicate that overall coordination efficiency is close to optimal performance, while the analysis of failure causes, classified into spatial and temporal coordination and skill selection, shows that these vary over tasks. The project website can be found at http://labor-agent.github.io
- Abstract(参考訳): 複雑な操作タスクを解く能力を持つロボットの能力は急速に進歩してきたが、効果的な時間的・空間的調整の困難さから、両手に関わるタスクを解くためのバイマニュアルロボットの制御ポリシーを作成することは依然として困難である。
ステップ・バイ・ステップの推論と文脈内学習という観点からの創発的な能力により、LLM(Large Language Models)は様々なロボットタスクを制御している。
しかし, 言語コミュニケーションの性質は, 連続空間におけるLLMに基づくコーディネーションを両面的タスクの特定の課題とする。
LLMによるこの課題に初めて取り組むために,Language-based Bimanual Orchestration (LABOR)を提案する。
シミュレーション環境では、NICOLヒューマノイドロボット上での日常的な作業を通じて、LABORエージェントを評価する。
報告された成功率は、全体的な調整効率が最適性能に近いことを示しているが、失敗原因の分析は、空間的および時間的調整とスキル選択に分類され、これらがタスクによって異なることを示している。
プロジェクトのWebサイトはhttp://labor-agent.github.ioにある。
関連論文リスト
- CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models [19.73329768987112]
CurricuLLMは複雑なロボット制御タスクのためのカリキュラム学習ツールである。
自然言語形式のタスク学習を支援するサブタスクを生成する。
また、サブタスクの自然言語記述を実行可能なコードに変換する。
CurricuLLMは複雑なロボット制御タスクの学習を支援する。
論文 参考訳(メタデータ) (2024-09-27T01:48:16Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENTは、異種マルチロボットシステムの協調のための新しいLCMベースのタスク計画フレームワークである。
提案-実行-フィードバック-調整機構は,個々のロボットに対して動作を分解・割り当てするように設計されている。
実験の結果,我々の研究は,成功率と実行効率の面で,従来の手法をはるかに上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-23T15:53:41Z) - Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks [50.27313829438866]
Plan-Seq-Learn (PSL) は、抽象言語と学習した低レベル制御の間のギャップを埋めるためにモーションプランニングを使用するモジュラーアプローチである。
PSLは85%以上の成功率、言語ベース、古典的、エンドツーエンドのアプローチを達成している。
論文 参考訳(メタデータ) (2024-05-02T17:59:31Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - LoHoRavens: A Long-Horizon Language-Conditioned Benchmark for Robotic
Tabletop Manipulation [38.66406497318709]
この研究はテーブルトップ操作タスクに焦点を当て、色、サイズ、空間、算術、参照にまたがる様々なロングホライゾン推論側面をカバーするシミュレーションベンチマークである textitLoHoRavens をリリースする。
LLMに明示的および暗黙的な観察フィードバックを組み込むためのキャプション生成と学習可能なインタフェースの2つの方法を検討した。
論文 参考訳(メタデータ) (2023-10-18T14:53:14Z) - LEMMA: Learning Language-Conditioned Multi-Robot Manipulation [21.75163634731677]
LanguagE-Conditioned Multi-robot Manipulation (LEMMA)
LeMMAは、手続き的に生成されるタスクが8種類あり、複雑さは様々である。
それぞれのタスクに対して,800の専門的なデモンストレーションと,トレーニングと評価のためのヒューマンインストラクションを提供します。
論文 参考訳(メタデータ) (2023-08-02T04:37:07Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - Learning Neuro-Symbolic Skills for Bilevel Planning [63.388694268198655]
意思決定は、連続したオブジェクト中心の状態、継続的なアクション、長い地平線、まばらなフィードバックを持つロボット環境では難しい。
タスク・アンド・モーション・プランニング(TAMP)のような階層的なアプローチは、意思決定を2つ以上の抽象レベルに分解することでこれらの課題に対処する。
我々の主な貢献は、オペレーターとサンプルラーを組み合わせたパラメータ化警察の学習方法である。
論文 参考訳(メタデータ) (2022-06-21T19:01:19Z) - Bi-Manual Manipulation and Attachment via Sim-to-Real Reinforcement
Learning [23.164743388342803]
シミュレーションで訓練された強化学習を用いて,両手作業の解法について検討する。
また、RLポリシーの効果的なトレーニングにつながるシミュレーション環境の変更についても検討する。
本研究では,2つのロボットアームが磁気的接続点を持つ2つのブロックを拾い上げるための接続タスクを設計する。
論文 参考訳(メタデータ) (2022-03-15T21:49:20Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
我々は,実世界の長距離ロボット操作作業に,スキル発見による取り組みを行う。
未解決のデモンストレーションから再利用可能なスキルのライブラリを学ぶためのボトムアップアプローチを提案する。
提案手法は,多段階操作タスクにおける最先端の模倣学習手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-28T16:18:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。