Demonstration of logical qubits and repeated error correction with better-than-physical error rates
- URL: http://arxiv.org/abs/2404.02280v2
- Date: Thu, 4 Apr 2024 17:43:25 GMT
- Title: Demonstration of logical qubits and repeated error correction with better-than-physical error rates
- Authors: M. P. da Silva, C. Ryan-Anderson, J. M. Bello-Rivas, A. Chernoguzov, J. M. Dreiling, C. Foltz, F. Frachon, J. P. Gaebler, T. M. Gatterman, L. Grans-Samuelsson, D. Hayes, N. Hewitt, J. Johansen, D. Lucchetti, M. Mills, S. A. Moses, B. Neyenhuis, A. Paz, J. Pino, P. Siegfried, J. Strabley, A. Sundaram, D. Tom, S. J. Wernli, M. Zanner, R. P. Stutz, K. M. Svore,
- Abstract summary: We present experiments on a trapped-ion QCCD processor where, through the use of fault-tolerant encoding and error correction, we are able to suppress logical error rates to levels below the physical error rates.
Results signify an important transition from noisy intermediate scale quantum computing to reliable quantum computing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The promise of quantum computers hinges on the ability to scale to large system sizes, e.g., to run quantum computations consisting of more than 100 million operations fault-tolerantly. This in turn requires suppressing errors to levels inversely proportional to the size of the computation. As a step towards this ambitious goal, we present experiments on a trapped-ion QCCD processor where, through the use of fault-tolerant encoding and error correction, we are able to suppress logical error rates to levels below the physical error rates. In particular, we entangled logical qubits encoded in the [[7,1,3]] code with error rates 9.8 times to 500 times lower than at the physical level, and entangled logical qubits encoded in a [[12,2,4]] code with error rates 4.7 times to 800 times lower than at the physical level, depending on the judicious use of post-selection. Moreover, we demonstrate repeated error correction with the [[12,2,4]] code, with logical error rates below physical circuit baselines corresponding to repeated CNOTs, and show evidence that the error rate per error correction cycle, which consists of over 100 physical CNOTs, approaches the error rate of two physical CNOTs. These results signify an important transition from noisy intermediate scale quantum computing to reliable quantum computing, and demonstrate advanced capabilities toward large-scale fault-tolerant quantum computing.
Related papers
- Quantum error correction below the surface code threshold [107.92016014248976]
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit.
We present two surface code memories operating below a critical threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder.
Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.
arXiv Detail & Related papers (2024-08-24T23:08:50Z) - Mitigating errors in logical qubits [1.6385815610837167]
We develop new methods to quantify logical failure rates with exclusive decoders.
We identify a regime at low error rates where the exclusion rate decays with code distance.
Our work highlights the importance of post-selection as a powerful tool in quantum error correction.
arXiv Detail & Related papers (2024-05-06T18:04:41Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.