論文の概要: Quantum thermodynamics of nonequilibrium processes in lattice gauge theories
- arxiv url: http://arxiv.org/abs/2404.02965v1
- Date: Wed, 3 Apr 2024 18:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 18:54:31.463538
- Title: Quantum thermodynamics of nonequilibrium processes in lattice gauge theories
- Title(参考訳): 格子ゲージ理論における非平衡過程の量子熱力学
- Authors: Zohreh Davoudi, Christopher Jarzynski, Niklas Mueller, Greeshma Oruganti, Connor Powers, Nicole Yunger Halpern,
- Abstract要約: 強結合熱力学を用いて熱力学量を定義する方法を示す。
我々の定義は、量子シミュレータで実行される簡単な非平衡過程である瞬時クエンチに適合する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early universe and in particle colliders, starting from the Standard Model. Classical-computing methods, via the framework of lattice gauge theory, have experienced limited success in this mission. Quantum simulation of lattice gauge theories holds promise for overcoming computational limitations. Because of local constraints (Gauss's laws), lattice gauge theories have an intricate Hilbert-space structure. This structure complicates the definition of thermodynamic properties of systems coupled to reservoirs during equilibrium and nonequilibrium processes. We show how to define thermodynamic quantities such as work and heat using strong-coupling thermodynamics, a framework that has recently burgeoned within the field of quantum thermodynamics. Our definitions suit instantaneous quenches, simple nonequilibrium processes undertaken in quantum simulators. To illustrate our framework, we compute the work and heat exchanged during a quench in a $Z_2$ lattice gauge theory coupled to matter in 1+1 dimensions. The thermodynamic quantities, as functions of the quench parameter, evidence an expected phase transition. For general thermal states, we derive a simple relation between a quantum many-body system's entanglement Hamiltonian, measurable with quantum-information-processing tools, and the Hamiltonian of mean force, used to define strong-coupling thermodynamic quantities.
- Abstract(参考訳): 核物理学と高エネルギー物理学の主要な目的は、標準模型から始まる初期の宇宙と粒子衝突器における物質の非平衡力学を記述することである。
格子ゲージ理論の枠組みを通じて古典計算法は、このミッションで限られた成功を収めてきた。
格子ゲージ理論の量子シミュレーションは、計算限界を克服することを約束する。
局所的制約(ガウスの法則)のため、格子ゲージ理論はヒルベルト空間構造を持つ。
この構造は平衡過程と非平衡過程の間に貯水池と結合した系の熱力学的性質の定義を複雑にする。
量子熱力学の分野に最近進出したフレームワークである強結合熱力学を用いて、仕事や熱などの熱力学量を定義する方法について述べる。
我々の定義は、量子シミュレータで実行される簡単な非平衡過程である瞬時クエンチに適合する。
この枠組みを説明するために、我々は1+1次元の物質と結合したZ_2$格子ゲージ理論において、クエンチ中の仕事と熱交換を計算する。
熱力学量は、クエンチパラメータの関数として、期待される相転移を示す。
一般的な熱状態に対しては、量子多体系の量子情報処理ツールで測定可能なハミルトニアンと、強い結合熱力学量を定義するために用いられる平均力のハミルトニアンとの間の単純な関係を導出する。
関連論文リスト
- Quantum thermodynamics as a gauge theory [0.0]
ゲージ不変な仕事と熱を定義する量子熱力学のゲージ理論が導入された。
我々はこの理論を2つの重要な方法で拡張し、以前は見過ごされていたエネルギースペクトルの退化を取り入れた。
この結果、ゲージ不変性の原理に基づく量子熱力学の完全な枠組みが導かれる。
論文 参考訳(メタデータ) (2024-09-12T00:46:48Z) - Unification of the first law of quantum thermodynamics [0.0]
古典的な熱力学の原理の下には、量子力学の基本的な公理から生じる類似の顕微鏡法則がある。
量子力学の法則は、エネルギーの保存に関する単純な言明である。
量子系の運動と熱へのエネルギー変化の正確な分配については曖昧さと不一致がある。
論文 参考訳(メタデータ) (2022-08-22T19:36:41Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
本研究では, 量子系が熱浴と相互作用する際の可視性に関する量子一般化を実験的に提案する。
微視的可逆性の原理に対する量子修正が低温限界において重要であることを検証した。
論文 参考訳(メタデータ) (2022-05-26T00:25:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
量子力学では、自由度当たりのエネルギーは等しく分布しない。
高温体制下では,古典的な結果が回復することを示す。
論文 参考訳(メタデータ) (2022-05-24T20:51:03Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
一般時間局所非マルコフマスター方程式を扱う。
我々は、電流とパワーを、古典的熱力学のようにプロセスに依存していると定義する。
この理論を量子熱機関に適用することにより、ゲージ変換が機械効率を変化させることを示す。
論文 参考訳(メタデータ) (2022-04-06T17:59:15Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
熱浴に結合したオープン量子系の熱力学挙動を記述する一般的な理論を開発する。
我々のアプローチは、縮小された開系状態に対する正確な時間局所量子マスター方程式に基づいている。
論文 参考訳(メタデータ) (2021-09-24T11:19:22Z) - Gauge invariant quantum thermodynamics: consequences for the first law [0.0]
情報理論は熱力学関数の同定において重要な役割を果たしている。
熱力学の背後にある粗粒化の緩やかな変種をエンコードする物理的動機付けゲージ変換を明示的に構築する。
その結果、量子的仕事と熱、および量子コヒーレンスの役割を再解釈する。
論文 参考訳(メタデータ) (2021-04-20T17:53:16Z) - Taking the temperature of a pure quantum state [55.41644538483948]
温度は一見単純な概念で、量子物理学研究の最前線ではまだ深い疑問が浮かび上がっています。
本稿では,量子干渉による純状態の温度測定手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
常温環境に埋め込まれた非エルミート量子系を記述する理論を提案する。
確率損失と熱ゆらぎの複合作用は分子接合の量子輸送を補助する。
論文 参考訳(メタデータ) (2021-01-21T14:33:34Z) - Geometric Quantum Thermodynamics [0.0]
幾何学的量子力学と古典力学の並列性に基づいて、量子熱力学の代替基盤を探究する。
我々は、量子状態の多様体上の分布として連続混合状態を導入し、マイクロカノニカルアンサンブルとカノニカルアンサンブルの両方を開発する。
熱力学の第一法則と第二法則とジャジンキのゆらぎ理論の両方を与える。
論文 参考訳(メタデータ) (2020-08-19T21:55:25Z) - First and Second Law of Quantum Thermodynamics: A Consistent Derivation
Based on a Microscopic Definition of Entropy [0.0]
このチュートリアルは、平衡から遠く離れた閉かつオープンな量子系の第一法則と第二法則の導出に焦点を当てている。
この導出は、内部エネルギー、熱力学的エントロピー、仕事、熱、温度の5つの必須量の顕微鏡的定義に基づいている。
論文 参考訳(メタデータ) (2020-02-20T15:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。