論文の概要: DELTA: Decomposed Efficient Long-Term Robot Task Planning using Large Language Models
- arxiv url: http://arxiv.org/abs/2404.03275v1
- Date: Thu, 4 Apr 2024 07:59:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 15:24:04.217441
- Title: DELTA: Decomposed Efficient Long-Term Robot Task Planning using Large Language Models
- Title(参考訳): DELTA:大規模言語モデルを用いた分割型長期ロボットタスク計画
- Authors: Yuchen Liu, Luigi Palmieri, Sebastian Koch, Ilche Georgievski, Marco Aiello,
- Abstract要約: 大規模言語モデル(LLM)の最近の進歩は、様々な研究分野に革命をもたらした。
LLMからの常識知識をロボットタスクやモーションプランニングに統合することは、ゲームチェンジャーであることが証明されている。
しかし、これらの大きなモデルにカプセル化された膨大な知識を管理することは、課題を提起している。
そこで我々は,これらの課題を克服するために,DELTAと呼ばれる新しいLCM型タスクプランニング手法を提案する。
- 参考スコア(独自算出の注目度): 5.385540718118656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have sparked a revolution across various research fields. In particular, the integration of common-sense knowledge from LLMs into robot task and motion planning has been proven to be a game-changer, elevating performance in terms of explainability and downstream task efficiency to unprecedented heights. However, managing the vast knowledge encapsulated within these large models has posed challenges, often resulting in infeasible plans generated by LLM-based planning systems due to hallucinations or missing domain information. To overcome these challenges and obtain even greater planning feasibility and computational efficiency, we propose a novel LLM-driven task planning approach called DELTA. For achieving better grounding from environmental topology into actionable knowledge, DELTA leverages the power of scene graphs as environment representations within LLMs, enabling the fast generation of precise planning problem descriptions. For obtaining higher planning performance, we use LLMs to decompose the long-term task goals into an autoregressive sequence of sub-goals for an automated task planner to solve. Our contribution enables a more efficient and fully automatic task planning pipeline, achieving higher planning success rates and significantly shorter planning times compared to the state of the art.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、様々な研究分野に革命をもたらした。
特に,LLMからの共通知識をロボットタスクや動作計画に統合することはゲームチェンジャーであり,説明可能性や下流タスク効率を前例のない高さまで向上させることが証明されている。
しかし、これらの大きなモデルにカプセル化されている膨大な知識の管理は、しばしば幻覚やドメイン情報の欠如によってLLMベースの計画システムによって実現不可能な計画が生み出される。
これらの課題を克服し、さらに計画の実現可能性と計算効率を向上させるために、DELTAと呼ばれる新しいLCM駆動タスク計画手法を提案する。
DELTAは環境トポロジから行動可能な知識へのより良い基盤化を実現するため、シーングラフのパワーをLCM内の環境表現として活用し、正確な計画問題記述を高速に生成する。
高い計画性能を得るためには,LLMを用いて長期タスク目標を自己回帰的なサブゴール列に分解し,タスクプランナが解決する。
我々の貢献により、より効率的で完全に自動化されたタスク計画パイプラインが実現され、より高い計画の成功率と、最先端の計画よりもはるかに短い計画時間を実現できます。
関連論文リスト
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
長期計画には不確実性蓄積、計算複雑性、遅延報酬、不完全情報といった課題が伴う。
本研究では,タスク階層を人間の指示から活用し,マルチロボット計画を容易にする手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T14:46:13Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
知識グラフ(KG)から得られた計画データを用いて,大規模言語モデル(LLM)計画能力を向上するための新しいフレームワークを提案する。
KGデータで微調整されたLLMは、計画能力を向上し、検索を含む複雑なQAタスクを処理するのがより適している。
論文 参考訳(メタデータ) (2024-06-20T13:07:38Z) - Consolidating Trees of Robotic Plans Generated Using Large Language
Models to Improve Reliability [6.4111574364474215]
LLM(Large Language Models)の固有の確率論的性質は、予測不可能な要素を導入している。
本稿では,多様な現実の要求やシナリオに対して,適切なロボットタスク計画を作成することを目的とした,革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-15T18:01:59Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning [84.6451394629312]
実世界のシナリオにおけるMLLMの計画能力を評価するベンチマークであるEgoPlan-Benchを紹介する。
EgoPlan-Benchは、人間レベルのタスクプランニングを実現するためのMLLMの改善のかなりの範囲を浮き彫りにする。
また,EgoPlan-Bench上でのモデル性能を効果的に向上する特殊命令チューニングデータセットであるEgoPlan-ITを提案する。
論文 参考訳(メタデータ) (2023-12-11T03:35:58Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
大規模言語モデル(LLM)は、タスクに依存しないプランナとして一般化性を高める可能性を提供する。
ISR-LLMは,反復的な自己複製プロセスを通じてLCMに基づく計画を改善する新しいフレームワークである。
ISR-LLM は現状の LLM ベースのプランナに比べてタスク達成率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-08-26T01:31:35Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
本研究では,現場制約を考慮した地上計画のための具体的タスクにおけるTAsk Planing Agent (TaPA)を提案する。
推論の際には,オープンボキャブラリオブジェクト検出器を様々な場所で収集された多視点RGB画像に拡張することにより,シーン内の物体を検出する。
実験の結果,我々のTaPAフレームワークから生成されたプランは,LLaVAやGPT-3.5よりも大きなマージンで高い成功率が得られることがわかった。
論文 参考訳(メタデータ) (2023-07-04T17:58:25Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
本稿では,象徴的タスク計画と機械学習アプローチのギャップを埋めることを目的としたフレームワークを提案する。
大規模言語モデル(LLM)を計画ドメイン定義言語(PDDL)と互換性のあるニューロシンボリックタスクプランナーに訓練する根拠
選択されたドメインにおける予備的な結果から, (i) テストデータセットの95.5%の問題を1,000個のサンプルで解決し, (ii) 従来のシンボルプランナーよりも最大13.5%短いプランを作成し, (iii) 計画の可利用性の平均待ち時間を61.4%まで削減する。
論文 参考訳(メタデータ) (2023-03-01T11:54:22Z) - Plansformer: Generating Symbolic Plans using Transformers [24.375997526106246]
大規模言語モデル(LLM)は、自然言語処理(NLP)分野を著しく進歩させ、活発な研究対象となっている。
プランフォーマーは計画上の問題に微調整され、知識工学の努力を減らし、正確さと長さの点で良好な行動で計画を生成することができる。
Plansformerの1つの構成では、97%の有効なプランが達成されます。
論文 参考訳(メタデータ) (2022-12-16T19:06:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。