論文の概要: How Easily do Irrelevant Inputs Skew the Responses of Large Language Models?
- arxiv url: http://arxiv.org/abs/2404.03302v4
- Date: Thu, 12 Sep 2024 11:51:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 21:43:18.937007
- Title: How Easily do Irrelevant Inputs Skew the Responses of Large Language Models?
- Title(参考訳): 大規模言語モデルの応答をいかに簡単に入力するか?
- Authors: Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai Zhang, Yanghua Xiao,
- Abstract要約: 大きな言語モデル(LLM)は多くの知識集約的なタスクを達成するための拡張された能力を示す。
現在の検索システムに固有の欠陥があるため、検索する上位のパスには無関係な情報が存在する可能性がある。
我々は,意味的に無関係で,部分的に関連があり,質問に関連するような,高品質な無関係な情報を構築するための枠組みを導入する。
- 参考スコア(独自算出の注目度): 35.78256134989427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By leveraging the retrieval of information from external knowledge databases, Large Language Models (LLMs) exhibit enhanced capabilities for accomplishing many knowledge-intensive tasks. However, due to the inherent flaws of current retrieval systems, there might exist irrelevant information within those retrieving top-ranked passages. In this work, we present a comprehensive investigation into the robustness of LLMs to different types of irrelevant information under various conditions. We initially introduce a framework to construct high-quality irrelevant information that ranges from semantically unrelated, partially related, and related to questions. Furthermore, our analysis demonstrates that the constructed irrelevant information not only scores highly on similarity metrics, being highly retrieved by existing systems, but also bears semantic connections to the context. Our investigation reveals that current LLMs still face challenges in discriminating highly semantically related information and can be easily distracted by these irrelevant yet misleading content. Besides, we also find that current solutions for handling irrelevant information have limitations in improving the robustness of LLMs to such distractions. All the resources are available on GitHub at https://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Information.
- Abstract(参考訳): 外部知識データベースからの情報検索を活用することで、Large Language Models (LLMs)は、多くの知識集約的なタスクを達成するための拡張された能力を示す。
しかし、現在の検索システムに固有の欠陥があるため、検索する上位のパスには無関係な情報が存在する可能性がある。
本研究では,様々な条件下での異なる種類の無関係情報に対するLSMの堅牢性に関する包括的調査を行う。
まず、意味的に無関係で、部分的に関連があり、質問に関係のある高品質な無関係な情報を構築するための枠組みを導入する。
さらに, 構築した無関係情報は, 類似度測定値に高いスコアを付けるだけでなく, 既存のシステムによって高い精度で検索されるだけでなく, 文脈とのセマンティックな関連性も持つことを示す。
我々の調査によると、現在のLLMは、高度に意味論的に関連のある情報を識別する上で依然として課題に直面しており、これら無関係で誤解を招くコンテンツに容易に気を散らすことができる。
また、関連のない情報を扱うための現在の解決策は、そのような注意をそらすためにLLMの堅牢性を改善するのに限界があることも見出した。
すべてのリソースはGitHubでhttps://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Informationで公開されている。
関連論文リスト
- Enhancing Robustness in Large Language Models: Prompting for Mitigating the Impact of Irrelevant Information [12.278192878848415]
GSMIRという無関係情報を含む小学校数学問題のデータセットを構築した。
LLMは無関係な情報を識別できるが、一度特定されると引き起こされる干渉を効果的に軽減しない。
無関係な情報の影響を識別し、自己緩和するLSMの能力を高める新しい自動構築手法であるATFを提案する。
論文 参考訳(メタデータ) (2024-08-20T07:49:38Z) - Reliable, Adaptable, and Attributable Language Models with Retrieval [144.26890121729514]
パラメトリック言語モデル(LM)は大量のWebデータに基づいて訓練されている。
幻覚、新しいデータ分布への適応の困難、妥当性の欠如など、実践的な課題に直面している。
我々は、次世代のLMとしてパラメトリックLMを置き換えるための検索拡張LMを提唱する。
論文 参考訳(メタデータ) (2024-03-05T18:22:33Z) - Retrieval Helps or Hurts? A Deeper Dive into the Efficacy of Retrieval Augmentation to Language Models [7.537599020279862]
大規模言語モデル(LM)における実体と関係の組合せの効果について検討する。
一般の事実を想起する上で,より大きなLMは優れているが,検索者に比べて少ないエンティティ-リレーションペアでは困難である。
適応型検索システムを用いて,より微細な測定値と洞察値の有効性を実証する。
論文 参考訳(メタデータ) (2024-02-21T03:05:50Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
本稿では,知識グラフに基づく拡張と合わせて,グラフ駆動型コンテキスト検索を組み合わせた新しいフレームワークを提案する。
我々は,様々なパラメータサイズを持つ大規模言語モデル(LLM)の実験を行い,知識の基盤化能力を評価し,オープンな質問に対する回答の事実的正確性を決定する。
われわれの方法であるGraphContextGenは、テキストベースの検索システムよりも一貫して優れており、その堅牢性と多くのユースケースへの適応性を実証している。
論文 参考訳(メタデータ) (2024-01-23T11:25:34Z) - RECALL: A Benchmark for LLMs Robustness against External Counterfactual
Knowledge [69.79676144482792]
本研究の目的は,LLMが外部知識から信頼できる情報を識別する能力を評価することである。
本ベンチマークは,質問応答とテキスト生成という2つのタスクから構成される。
論文 参考訳(メタデータ) (2023-11-14T13:24:19Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
大規模言語モデル(LLM)はタスク固有の微調整なしで優れた性能を示す。
検索に基づく手法は、非パラメトリックな世界知識を提供し、質問応答のようなタスクのパフォーマンスを向上させることができる。
SKR(Self-Knowledge guided Retrieval augmentation)は、LLMがこれまで遭遇した質問を参照できるようにする、シンプルで効果的な方法である。
論文 参考訳(メタデータ) (2023-10-08T04:22:33Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
情報検索は、オープンドメイン質問応答(QA)など、多くのダウンストリームタスクにとって重要な要素である。
本稿では、エンティティ/イベントリンクモデルとクエリ分解モデルを用いて、クエリの異なる情報単位により正確にフォーカスする情報検索パイプラインを提案する。
より解釈可能で信頼性が高いが,提案したパイプラインは,5つのIRおよびQAベンチマークにおける通過カバレッジと記述精度を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-09T07:47:17Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。