論文の概要: COMPILED: Deep Metric Learning for Defect Classification of Threaded Pipe Connections using Multichannel Partially Observed Functional Data
- arxiv url: http://arxiv.org/abs/2404.03329v3
- Date: Sun, 08 Dec 2024 13:45:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:50:24.744745
- Title: COMPILED: Deep Metric Learning for Defect Classification of Threaded Pipe Connections using Multichannel Partially Observed Functional Data
- Title(参考訳): COMPILED:多チャンネル部分的関数データを用いたスレッドパイプ接続の欠陥分類のためのDeep Metric Learning
- Authors: Juan Du, Yukun Xie, Chen Zhang,
- Abstract要約: 本稿では,各サンプルが部分的に観察された多チャンネル関数データとして表現される欠陥分類に着目した。
各欠陥タイプのサンプルは限定的かつ不均衡である。
本稿では,Deep Metrics Learningに基づくCompactLEDと呼ばれる革新的な分類手法を提案する。
- 参考スコア(独自算出の注目度): 6.688305507010403
- License:
- Abstract: In modern manufacturing, most products are conforming. Few products are nonconforming with different defect types. The identification of defect types can help further root cause diagnosis of production lines. With the sensing technology development, process variables evolved as time changes, which can be collected in high resolution as multichannel functional data. These functional data have rich information to characterize the process and help identify the defect types. Motivated by a real example from the threaded pipe connection process, we focus on defect classification where each sample is represented as partially observed multichannel functional data. However, the available samples for each defect type are limited and imbalanced. The functional data is partially observed since the pre-connection process before the threaded pipe connection process is unobserved as there is no sensor installed in the production line. Therefore, the defect classification based on imbalanced, multichannel, and partially observed functional data is very important but challenging. To deal with these challenges, we propose an innovative classification approach named as COMPILED based on deep metric learning. The framework leverages the power of deep metric learning to train on imbalanced datasets. A novel neural network structure is proposed to handle multichannel partially observed functional data. The results from a real-world case study demonstrate the superior accuracy of our framework when compared to existing benchmarks.
- Abstract(参考訳): 現代の製造業では、ほとんどの製品が適合している。
欠陥タイプが異なる非コンフォーミングな製品はほとんどありません。
欠陥型の同定は、生産ラインのさらなる根本原因診断に役立つ。
センシング技術の発展に伴い、プロセス変数は時間変化として進化し、マルチチャネル機能データとして高解像度で収集できる。
これらの機能データは、プロセスを特徴づけ、欠陥タイプを特定するのに役立つ豊富な情報を持っている。
スレッドパイプ接続プロセスの実際の例により、各サンプルが部分的に観察された多チャンネル関数データとして表現される欠陥分類に焦点をあてる。
しかし、各欠陥タイプのサンプルは制限され、不均衡である。
製造ラインにセンサが設置されていないため、スレッデッドパイプ接続プロセス前のプレコネクションプロセスが観察されないため、機能データは部分的に観察される。
したがって, 不均衡, 多チャンネル, 部分的に観察された機能データに基づく欠陥分類は非常に重要であるが, 困難である。
これらの課題に対処するため、深層学習に基づくCompactLEDと呼ばれる革新的な分類手法を提案する。
このフレームワークは、深いメトリック学習の力を活用して、不均衡なデータセットをトレーニングする。
多チャンネル部分的機能データを扱うために,新しいニューラルネットワーク構造を提案する。
実世界のケーススタディの結果は、既存のベンチマークと比較すると、我々のフレームワークの精度が優れていることを示している。
関連論文リスト
- ITI-IQA: a Toolbox for Heterogeneous Univariate and Multivariate Missing Data Imputation Quality Assessment [0.0]
ITI-IQAは、様々な計算手法の信頼性を評価するために設計されたユーティリティのセットである。
ツールボックスには、測定をチェックするための診断方法とグラフィカルツールのスイートも含まれている。
論文 参考訳(メタデータ) (2024-07-16T14:26:46Z) - Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation [70.36344590967519]
ノイズの多いデータやニュアンスの特徴は,その正確さを損なうのに十分であることを示す。
ノイズの多いデータとノイズのある特徴を持つ合成データセットと実データセットの両方で、この現象を実証する。
論文 参考訳(メタデータ) (2024-06-27T09:57:31Z) - Continual learning for surface defect segmentation by subnetwork
creation and selection [55.2480439325792]
破滅的な忘れを伴わずにセグメンテーションタスクを実行する,新たな連続的(あるいは寿命の長い)学習アルゴリズムを導入する。
この方法は、2つの異なる表面欠陥分割問題に適用され、漸進的に学習される。
当社のアプローチでは,すべてのトレーニングデータ(すべての欠陥)を同時に見る場合,共同トレーニングと同等の結果が得られます。
論文 参考訳(メタデータ) (2023-12-08T15:28:50Z) - Functional data learning using convolutional neural networks [0.0]
本稿では、回帰学習や分類学習において、畳み込みニューラルネットワークがどのように使用できるかを示す。
我々は、畳み込みニューラルネットワークの特定のが典型的なアーキテクチャを使って、すべての回帰演習を行います。
この手法は単純ではあるが精度が高く、将来は工学や医学への応用が期待できる。
論文 参考訳(メタデータ) (2023-10-05T04:46:52Z) - An Order-Invariant and Interpretable Hierarchical Dilated Convolution
Neural Network for Chemical Fault Detection and Diagnosis [7.226239130399725]
畳み込みニューラルネットワーク(CNN)は、化学故障検出および診断タスクにおける多くの成功例を持つ、人気のあるディープラーニングアルゴリズムである。
本稿では,命令不変かつ解釈可能な階層型畳み込みニューラルネットワーク(HDLCNN)を提案する。
提案手法は,特徴量の定量化のためのSHAP値を含むことにより,解釈可能性を提供する。
論文 参考訳(メタデータ) (2023-02-13T10:28:41Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - TL-SDD: A Transfer Learning-Based Method for Surface Defect Detection
with Few Samples [17.884998028369026]
表面欠陥検出のための新しいトランスファーラーニング法TL-SDDを提案する。
我々は、共通の欠陥クラスから稀な欠陥クラスに知識を移すための2段階のトレーニングスキームを採用する。
基準法と比較すると, 稀な欠陥クラスに対して, 提案手法の性能は1.98%向上した。
論文 参考訳(メタデータ) (2021-08-16T07:24:00Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
多次元関数データのサンプルから連続表現を学習するためのフレームワークを提案する。
本研究では, テンソル分解により, 得られた推定問題を効率的に解けることを示す。
我々は、ニューロイメージングにおける真のデータ応用で締めくくっている。
論文 参考訳(メタデータ) (2021-07-30T16:02:15Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
影響関数は、テスト時間予測におけるサンプルの効果を近似する。
影響評価は浅いネットワークでは かなり正確です
ヘッセン正則化は、高品質な影響推定を得るために重要である。
論文 参考訳(メタデータ) (2020-06-25T18:25:59Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。