Graph Neural Networks for Electric and Hydraulic Data Fusion to Enhance Short-term Forecasting of Pumped-storage Hydroelectricity
- URL: http://arxiv.org/abs/2404.03368v1
- Date: Thu, 4 Apr 2024 11:09:49 GMT
- Title: Graph Neural Networks for Electric and Hydraulic Data Fusion to Enhance Short-term Forecasting of Pumped-storage Hydroelectricity
- Authors: Raffael Theiler, Olga Fink,
- Abstract summary: Pumped-storage hydropower plants (PSH) actively participate in grid power-frequency control.
Predicting dynamically changing states is essential for comprehending the underlying sensor and machine conditions.
This work introduces the application of spectral-temporal graph neural networks, which leverage self-attention mechanisms to concurrently capture and learn meaningful subsystem interdependencies.
- Score: 6.675805308519987
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pumped-storage hydropower plants (PSH) actively participate in grid power-frequency control and therefore often operate under dynamic conditions, which results in rapidly varying system states. Predicting these dynamically changing states is essential for comprehending the underlying sensor and machine conditions. This understanding aids in detecting anomalies and faults, ensuring the reliable operation of the connected power grid, and in identifying faulty and miscalibrated sensors. PSH are complex, highly interconnected systems encompassing electrical and hydraulic subsystems, each characterized by their respective underlying networks that can individually be represented as graphs. To take advantage of this relational inductive bias, graph neural networks (GNNs) have been separately applied to state forecasting tasks in the individual subsystems, but without considering their interdependencies. In PSH, however, these subsystems depend on the same control input, making their operations highly interdependent and interconnected. Consequently, hydraulic and electrical sensor data should be fused across PSH subsystems to improve state forecasting accuracy. This approach has not been explored in GNN literature yet because many available PSH graphs are limited to their respective subsystem boundaries, which makes the method unsuitable to be applied directly. In this work, we introduce the application of spectral-temporal graph neural networks, which leverage self-attention mechanisms to concurrently capture and learn meaningful subsystem interdependencies and the dynamic patterns observed in electric and hydraulic sensors. Our method effectively fuses data from the PSH's subsystems by operating on a unified, system-wide graph, learned directly from the data, This approach leads to demonstrably improved state forecasting performance and enhanced generalizability.
Related papers
- Online Multi-modal Root Cause Analysis [61.94987309148539]
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems.
Existing online RCA methods handle only single-modal data overlooking, complex interactions in multi-modal systems.
We introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization.
arXiv Detail & Related papers (2024-10-13T21:47:36Z) - Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
arXiv Detail & Related papers (2024-10-02T08:58:30Z) - Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
Real-time condition monitoring is crucial for the reliable and efficient operation of complex systems.
We propose a Heterogeneous Temporal Graph Neural Network (HTGNN) framework to address this problem.
HTGNN explicitly models signals from diverse sensors and integrates operating conditions into the model architecture.
arXiv Detail & Related papers (2024-07-26T12:16:53Z) - Building Hybrid B-Spline And Neural Network Operators [0.0]
Control systems are indispensable for ensuring the safety of cyber-physical systems (CPS)
We propose a novel strategy that combines the inductive bias of B-splines with data-driven neural networks to facilitate real-time predictions of CPS behavior.
arXiv Detail & Related papers (2024-06-06T21:54:59Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
We show how graph convolutional networks and hyperstructures representation learning framework can be employed for accurate, reliable, and computationally efficient distribution grid planning.
Our numerical experiments show that the proposed Hyper-GCNNs approach yields substantial gains in computational efficiency.
arXiv Detail & Related papers (2022-11-14T01:29:09Z) - Distributed neural network control with dependability guarantees: a
compositional port-Hamiltonian approach [0.0]
Large-scale cyber-physical systems require that control policies are distributed, that is, that they only rely on local real-time measurements and communication with neighboring agents.
Recent work has proposed training Neural Network (NN) distributed controllers.
A main challenge of NN controllers is that they are not dependable during and after training, that is, the closed-loop system may be unstable, and the training may fail due to vanishing and exploding gradients.
arXiv Detail & Related papers (2021-12-16T17:37:11Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Physics-Informed Neural Networks for Non-linear System Identification
for Power System Dynamics [0.0]
This paper investigates the performance of Physics-Informed Neural Networks (PINN) for discovering the frequency dynamics of future power systems.
PINNs have the potential to address challenges such as the stronger non-linearities of low-inertia systems, increased measurement noise, and limited availability of data.
arXiv Detail & Related papers (2020-04-08T14:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.