Heterogeneous Graph Neural Networks for Short-term State Forecasting in Power Systems across Domains and Time Scales: A Hydroelectric Power Plant Case Study
- URL: http://arxiv.org/abs/2507.06694v1
- Date: Wed, 09 Jul 2025 09:39:14 GMT
- Title: Heterogeneous Graph Neural Networks for Short-term State Forecasting in Power Systems across Domains and Time Scales: A Hydroelectric Power Plant Case Study
- Authors: Raffael Theiler, Olga Fink,
- Abstract summary: Accurate short-term state forecasting is essential for efficient and stable operation of modern power systems.<n>Modern power systems often span multiple physical domains posing significant challenges for modeling and prediction.<n>We propose the use of Heterogeneous Graph Attention Networks to address these limitations.
- Score: 6.675805308519987
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate short-term state forecasting is essential for efficient and stable operation of modern power systems, especially in the context of increasing variability introduced by renewable and distributed energy resources. As these systems evolve rapidly, it becomes increasingly important to reliably predict their states in the short term to ensure operational stability, support control decisions, and enable interpretable monitoring of sensor and machine behavior. Modern power systems often span multiple physical domains - including electrical, mechanical, hydraulic, and thermal - posing significant challenges for modeling and prediction. Graph Neural Networks (GNNs) have emerged as a promising data-driven framework for system state estimation and state forecasting in such settings. By leveraging the topological structure of sensor networks, GNNs can implicitly learn inter-sensor relationships and propagate information across the network. However, most existing GNN-based methods are designed under the assumption of homogeneous sensor relationships and are typically constrained to a single physical domain. This limitation restricts their ability to integrate and reason over heterogeneous sensor data commonly encountered in real-world energy systems, such as those used in energy conversion infrastructure. In this work, we propose the use of Heterogeneous Graph Attention Networks to address these limitations. Our approach models both homogeneous intra-domain and heterogeneous inter-domain relationships among sensor data from two distinct physical domains - hydraulic and electrical - which exhibit fundamentally different temporal dynamics. Experimental results demonstrate that our method significantly outperforms conventional baselines on average by 35.5% in terms of normalized root mean square error, confirming its effectiveness in multi-domain, multi-rate power system state forecasting.
Related papers
- Predicting Large-scale Urban Network Dynamics with Energy-informed Graph Neural Diffusion [51.198001060683296]
Networked urban systems facilitate the flow of people, resources, and services.<n>Current models such as graph neural networks have shown promise but face a trade-off between efficacy and efficiency.<n>This paper addresses this trade-off by drawing inspiration from physical laws to inform essential model designs.
arXiv Detail & Related papers (2025-07-31T01:24:01Z) - Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
arXiv Detail & Related papers (2025-06-10T18:40:20Z) - Hybrid Temporal Differential Consistency Autoencoder for Efficient and Sustainable Anomaly Detection in Cyber-Physical Systems [0.0]
Cyberattacks on critical infrastructure, particularly water distribution systems, have increased due to rapid digitalization.<n>This study addresses key challenges in anomaly detection by leveraging time correlations in sensor data.<n>We propose a hybrid autoencoder-based approach, referred to as hybrid TDC-AE, which extends TDC by incorporating both deterministic nodes and conventional statistical nodes.
arXiv Detail & Related papers (2025-04-08T09:22:44Z) - PowerGNN: A Topology-Aware Graph Neural Network for Electricity Grids [0.0]
This paper proposes a topology aware Graph Neural Network (GNN) framework for predicting power system states under high renewable integration.<n>We construct a graph based representation of the power network, modeling and integrating transmission lines as nodes and edges, and introduce a specialized GNN architecture that integrates GraphSAGE convolutions with Gated Recurrent Units (GRUs)<n>Our results show that the proposed GNN outperforms baseline approaches including fully connected neural networks, linear regression, and rolling mean models, achieving substantial improvements in predictive accuracy.
arXiv Detail & Related papers (2025-03-26T01:22:31Z) - Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
Real-time condition monitoring is crucial for the reliable and efficient operation of complex systems.<n>Virtual sensing addresses limitations by leveraging readily available sensor data and system knowledge.<n>We propose a Heterogeneous Temporal Graph Neural Network (HTGNN) framework.
arXiv Detail & Related papers (2024-07-26T12:16:53Z) - Energy-based Epistemic Uncertainty for Graph Neural Networks [47.52218144839666]
We propose an energy-based model (EBM) that provides high-quality uncertainty estimates.<n>We provably induce an integrable density in the data space by regularizing the energy function.<n>Our framework is a simple and effective post hoc method applicable to any pre-trained GNN that is sensitive to various distribution shifts.
arXiv Detail & Related papers (2024-06-06T13:13:29Z) - Physics-Enhanced Graph Neural Networks For Soft Sensing in Industrial Internet of Things [6.374763930914524]
The Industrial Internet of Things (IIoT) is reshaping manufacturing, industrial processes, and infrastructure management.
achieving highly reliable IIoT can be hindered by factors such as the cost of installing large numbers of sensors, limitations in retrofitting existing systems with sensors, or harsh environmental conditions that may make sensor installation impractical.
We propose physics-enhanced Graph Neural Networks (GNNs), which integrate principles of physics into graph-based methodologies.
arXiv Detail & Related papers (2024-04-11T18:03:59Z) - Graph Neural Networks for Electric and Hydraulic Data Fusion to Enhance Short-term Forecasting of Pumped-storage Hydroelectricity [6.675805308519987]
Pumped-storage hydropower plants (PSH) actively participate in grid power-frequency control.
Predicting dynamically changing states is essential for comprehending the underlying sensor and machine conditions.
This work introduces the application of spectral-temporal graph neural networks, which leverage self-attention mechanisms to concurrently capture and learn meaningful subsystem interdependencies.
arXiv Detail & Related papers (2024-04-04T11:09:49Z) - Deep Convolutional Neural Networks for Short-Term Multi-Energy Demand Prediction of Integrated Energy Systems [49.1574468325115]
This paper develops six novel prediction models based on Convolutional Neural Networks (CNNs) for forecasting multi-energy power consumptions.<n>The models are applied in a comprehensive manner on a novel integrated electrical, heat and gas network system.
arXiv Detail & Related papers (2023-12-24T14:56:23Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
We show how graph convolutional networks and hyperstructures representation learning framework can be employed for accurate, reliable, and computationally efficient distribution grid planning.
Our numerical experiments show that the proposed Hyper-GCNNs approach yields substantial gains in computational efficiency.
arXiv Detail & Related papers (2022-11-14T01:29:09Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.