論文の概要: Knowledge Graph Representation for Political Information Sources
- arxiv url: http://arxiv.org/abs/2404.03437v1
- Date: Thu, 4 Apr 2024 13:36:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 14:41:45.486843
- Title: Knowledge Graph Representation for Political Information Sources
- Title(参考訳): 政治情報ソースのための知識グラフ表現
- Authors: Tinatin Osmonova, Alexey Tikhonov, Ivan P. Yamshchikov,
- Abstract要約: 我々は、Britbart News(BN)とNew York Times(NYT)の2つのニュースポータルから収集されたデータを分析する。
本研究は,BNおよびNYTメディアポータルから収集した11.5年間のデータセットを用いて,知識グラフを用いて行った。
- 参考スコア(独自算出の注目度): 16.959319157216466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of computational social science, many scholars utilize data analysis and natural language processing tools to analyze social media, news articles, and other accessible data sources for examining political and social discourse. Particularly, the study of the emergence of echo-chambers due to the dissemination of specific information has become a topic of interest in mixed methods research areas. In this paper, we analyze data collected from two news portals, Breitbart News (BN) and New York Times (NYT) to prove the hypothesis that the formation of echo-chambers can be partially explained on the level of an individual information consumption rather than a collective topology of individuals' social networks. Our research findings are presented through knowledge graphs, utilizing a dataset spanning 11.5 years gathered from BN and NYT media portals. We demonstrate that the application of knowledge representation techniques to the aforementioned news streams highlights, contrary to common assumptions, shows relative "internal" neutrality of both sources and polarizing attitude towards a small fraction of entities. Additionally, we argue that such characteristics in information sources lead to fundamental disparities in audience worldviews, potentially acting as a catalyst for the formation of echo-chambers.
- Abstract(参考訳): 計算社会科学の台頭に伴い、多くの学者は、データ分析と自然言語処理ツールを使用して、ソーシャルメディア、ニュース記事、その他のアクセス可能なデータソースを分析し、政治的・社会的談話を調べる。
特に,特定の情報の拡散に伴うエコーチャンバの出現に関する研究が,混合手法研究分野における関心の対象となっている。
本稿では、Breitbart News(BN)とNew York Times(NYT)の2つのニュースポータルから収集したデータを分析し、個人のソーシャルネットワークの集合的トポロジではなく、個人の情報消費のレベルについて、エコーチャンバの形成を部分的に説明できるという仮説を証明する。
本研究は,BNおよびNYTメディアポータルから収集した11.5年間のデータセットを用いて,知識グラフを用いて行った。
上記のニュースストリームに対する知識表現手法の適用は、一般的な仮定とは対照的に、両方のソースの相対的な「内部」中立性を示し、少数のエンティティに対して偏極的態度を示す。
さらに,情報ソースのこのような特徴が聴衆の世界観の基本的な相違を招き,エコーチャンバの形成の触媒として機能する可能性も指摘されている。
関連論文リスト
- Ethio-Fake: Cutting-Edge Approaches to Combat Fake News in Under-Resourced Languages Using Explainable AI [44.21078435758592]
誤報はコンテンツの作成や拡散が容易なため、急速に広まることがある。
従来のフェイクニュース検出のアプローチは、コンテンツベースの機能にのみ依存することが多い。
本稿では,ソーシャルコンテキストに基づく機能とニュースコンテンツ機能を統合した包括的アプローチを提案する。
論文 参考訳(メタデータ) (2024-10-03T15:49:35Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
オンラインソーシャルメディア上で政治的分極を特徴付ける機械学習モデルを開発することは、大きな課題である。
これらの課題は主に、注釈付きデータの欠如、ソーシャルメディアデータセットにおけるノイズの存在、膨大な量のデータなど、さまざまな要因に起因している。
本稿では、ソーシャルメディア投稿のラベル付けに、メディアバイアスと投稿コンテンツを活用する2つの方法を紹介する。
ソーシャルメディア投稿の政治的指向を予測することで,現在の機械学習モデルの性能向上を実証する。
論文 参考訳(メタデータ) (2023-11-21T03:34:20Z) - Identifying Informational Sources in News Articles [109.70475599552523]
我々は、ニュース執筆に使用される情報ソースの、最大かつ最も広範囲にアノテートされたデータセットを構築した。
本稿では,ニュース記事中のソースの構成性を研究するための新しいタスクであるソース予測を導入する。
論文 参考訳(メタデータ) (2023-05-24T08:56:35Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Citation Trajectory Prediction via Publication Influence Representation
Using Temporal Knowledge Graph [52.07771598974385]
既存のアプローチは主に学術論文の時間的データとグラフデータのマイニングに依存している。
本フレームワークは,差分保存グラフ埋め込み,きめ細かい影響表現,学習に基づく軌道計算という3つのモジュールから構成される。
APSアカデミックデータセットとAIPatentデータセットの両方で実験を行った。
論文 参考訳(メタデータ) (2022-10-02T07:43:26Z) - SciLander: Mapping the Scientific News Landscape [8.504643390943409]
本稿では,SciLanderについて紹介する。SciLanderは,科学に基づくトピックに関するニュースソースの表現を学習する手法である。
我々は,2020年のパンデミック開始から18ヶ月の期間にわたって,500件の情報源から100万件近いニュース記事を含む,新たな新型コロナウイルスデータセットについて評価を行った。
論文 参考訳(メタデータ) (2022-05-16T20:20:43Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
異種情報ソース上での自己教師型学習を対照的に提案し,それらの関係を明らかにするとともに,噂をよりよく特徴付ける。
我々はこの枠組みをSRD(Self-supervised Rumor Detection)と呼ぶ。
3つの実世界のデータセットに対する大規模な実験により、ソーシャルメディア上での噂の自動検出におけるSRDの有効性が検証された。
論文 参考訳(メタデータ) (2022-04-19T12:10:03Z) - Surveying the Research on Fake News in Social Media: a Tale of Networks
and Language [0.0]
ジャーナリズムとニュース拡散の歴史は、偽造、誤報、プロパガンダ、未確認の噂、不十分な報道、憎悪と分裂を含むメッセージの排除と密接に結びついている。
オンラインソーシャルメディアの爆発的な成長と、ニュースを消費し、創造し、共有する何十億もの個人によって、この古代の問題は再燃している。
これは多くの研究者が、偽の新規拡散の研究、理解、検出、防止のための新しい方法を開発するきっかけとなった。
論文 参考訳(メタデータ) (2021-09-13T14:10:44Z) - "Don't quote me on that": Finding Mixtures of Sources in News Articles [85.92467549469147]
各ソースのtextitaffiliationとtextitroleに基づいてソースのオントロジーラベリングシステムを構築します。
これらの属性を名前付きソースに推論し、ニュース記事をこれらのソースの混合物として記述する確率モデルを構築します。
論文 参考訳(メタデータ) (2021-04-19T21:57:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。