論文の概要: A Methodology to Study the Impact of Spiking Neural Network Parameters considering Event-Based Automotive Data
- arxiv url: http://arxiv.org/abs/2404.03493v1
- Date: Thu, 4 Apr 2024 14:48:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 14:31:56.713757
- Title: A Methodology to Study the Impact of Spiking Neural Network Parameters considering Event-Based Automotive Data
- Title(参考訳): イベントベース自動車データを考慮したスパイクニューラルネットワークパラメータの影響に関する一検討
- Authors: Iqra Bano, Rachmad Vidya Wicaksana Putra, Alberto Marchisio, Muhammad Shafique,
- Abstract要約: 本稿では,イベントベース自動車データを考慮したSNNパラメータの影響を系統的に研究し,分析する手法を提案する。
本稿では,自律走行システムのSNNモデルを改善する手法を提案する。
本研究は,SNNパラメータ拡張のための一連のガイドラインを提供し,SNNベースのADシステムの実用化を可能にする。
- 参考スコア(独自算出の注目度): 5.59354286094951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Driving (AD) systems are considered as the future of human mobility and transportation. Solving computer vision tasks such as image classification and object detection/segmentation, with high accuracy and low power/energy consumption, is highly needed to realize AD systems in real life. These requirements can potentially be satisfied by Spiking Neural Networks (SNNs). However, the state-of-the-art works in SNN-based AD systems still focus on proposing network models that can achieve high accuracy, and they have not systematically studied the roles of SNN parameters when used for learning event-based automotive data. Therefore, we still lack understanding of how to effectively develop SNN models for AD systems. Toward this, we propose a novel methodology to systematically study and analyze the impact of SNN parameters considering event-based automotive data, then leverage this analysis for enhancing SNN developments. To do this, we first explore different settings of SNN parameters that directly affect the learning mechanism (i.e., batch size, learning rate, neuron threshold potential, and weight decay), then analyze the accuracy results. Afterward, we propose techniques that jointly improve SNN accuracy and reduce training time. Experimental results show that our methodology can improve the SNN models for AD systems than the state-of-the-art, as it achieves higher accuracy (i.e., 86%) for the NCARS dataset, and it can also achieve iso-accuracy (i.e., ~85% with standard deviation less than 0.5%) while speeding up the training time by 1.9x. In this manner, our research work provides a set of guidelines for SNN parameter enhancements, thereby enabling the practical developments of SNN-based AD systems.
- Abstract(参考訳): 自律運転(AD)システムは、人間の移動と交通の未来と見なされている。
リアルタイムのADシステムを実現するためには,画像分類や物体検出・分離などのコンピュータビジョンタスクを高精度かつ低消費電力で解決する必要がある。
これらの要件は、スパイキングニューラルネットワーク(SNN)によって満たされる可能性がある。
しかしながら、SNNベースのADシステムにおける最先端の作業は、精度の高いネットワークモデルの提案に重点を置いており、イベントベースの自動車データ学習において、SNNパラメータの役割を体系的に研究していない。
したがって、ADシステムのためのSNNモデルを効果的に開発する方法については、まだ理解されていない。
そこで本稿では,イベントベース自動車データを考慮したSNNパラメータの影響を体系的に研究し,分析する手法を提案する。
そこで我々はまず,学習メカニズム(バッチサイズ,学習速度,ニューロン閾値電位,体重減衰など)に直接影響を及ぼすSNNパラメータの異なる設定を探索し,精度を解析する。
その後,SNNの精度を向上し,トレーニング時間を短縮する手法を提案する。
実験結果から,NCARSデータセットの精度は86%,等精度(標準偏差0.5%以下で約85%)を達成でき,トレーニング時間を1.9倍に向上できることがわかった。
このようにして、本研究は、SNNパラメータ拡張のための一連のガイドラインを提供し、SNNベースのADシステムの実用的な開発を可能にする。
関連論文リスト
- Training Spiking Neural Networks via Augmented Direct Feedback Alignment [3.798885293742468]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックデバイスにニューラルネットワークを実装するための有望なソリューションである。
しかし、SNNニューロンの非分化性は、それらを訓練することを困難にしている。
本稿では、ランダムなプロジェクションに基づく勾配のないアプローチである拡張直接フィードバックアライメント(aDFA)を用いてSNNの訓練を行う。
論文 参考訳(メタデータ) (2024-09-12T06:22:44Z) - BKDSNN: Enhancing the Performance of Learning-based Spiking Neural Networks Training with Blurred Knowledge Distillation [20.34272550256856]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークを模倣し、離散スパイクを介して情報を伝達する。
本研究は,静的およびニューロモルフィックなデータセット上でSNNをトレーニングするための最先端性能を実現する。
論文 参考訳(メタデータ) (2024-07-12T08:17:24Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
従来の人工ニューラルネットワーク(ANN)の代替として、スパイキングニューラルネットワーク(SNN)が注目を集めている。
本稿では,SNNにおけるスキップ接続の影響について検討し,ANNからSNNへのモデル適応を行うハイパーパラメータ最適化手法を提案する。
本研究では,SNNの位置,タイプ,回数を最適化することで,SNNの精度と効率を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-03-23T07:57:32Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
ニューラルインスパイアされたイベント駆動処理でニューラルネットワーク(SNN)をスパイクすることで、非同期データを効率的に処理できる。
スパイク消滅問題を緩和するために,学習可能な神経力学を用いた適応型完全スパイキングフレームワークを提案する。
実験の結果,平均終端誤差(AEE)は最先端のANNと比較して平均13%減少した。
論文 参考訳(メタデータ) (2022-09-21T21:17:56Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
スパイキングニューラルネットワーク(SNN)は、現実の効率クリティカルなアプリケーションにますます多くデプロイされている。
研究者はすでに、SNNを敵の例で攻撃できることを実証している。
我々の知る限りでは、これはSNNの堅牢なトレーニングに関する最初の分析である。
論文 参考訳(メタデータ) (2022-04-12T21:26:49Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。