A Systems Theoretic Approach to Online Machine Learning
- URL: http://arxiv.org/abs/2404.03775v1
- Date: Thu, 4 Apr 2024 19:36:47 GMT
- Title: A Systems Theoretic Approach to Online Machine Learning
- Authors: Anli du Preez, Peter A. Beling, Tyler Cody,
- Abstract summary: The machine learning formulation of online learning is incomplete from a systems theoretic perspective.
The framework is formulated in terms of input-output systems and is further divided into system structure and system behavior.
This work formally approaches concept drift as part of the system behavior characteristics.
- Score: 3.6458439734112695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The machine learning formulation of online learning is incomplete from a systems theoretic perspective. Typically, machine learning research emphasizes domains and tasks, and a problem solving worldview. It focuses on algorithm parameters, features, and samples, and neglects the perspective offered by considering system structure and system behavior or dynamics. Online learning is an active field of research and has been widely explored in terms of statistical theory and computational algorithms, however, in general, the literature still lacks formal system theoretical frameworks for modeling online learning systems and resolving systems-related concept drift issues. Furthermore, while the machine learning formulation serves to classify methods and literature, the systems theoretic formulation presented herein serves to provide a framework for the top-down design of online learning systems, including a novel definition of online learning and the identification of key design parameters. The framework is formulated in terms of input-output systems and is further divided into system structure and system behavior. Concept drift is a critical challenge faced in online learning, and this work formally approaches it as part of the system behavior characteristics. Healthcare provider fraud detection using machine learning is used as a case study throughout the paper to ground the discussion in a real-world online learning challenge.
Related papers
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Interpretable Meta-Learning of Physical Systems [4.343110120255532]
Recent meta-learning methods rely on black-box neural networks, resulting in high computational costs and limited interpretability.
We argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task.
We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems.
arXiv Detail & Related papers (2023-12-01T10:18:50Z) - Online Learning of Wheel Odometry Correction for Mobile Robots with
Attention-based Neural Network [63.8376359764052]
Modern robotic platforms need a reliable localization system to operate daily beside humans.
Simple pose estimation algorithms based on filtered wheel and inertial odometry often fail in the presence of abrupt kinematic changes and wheel slips.
We propose an innovative online learning approach for wheel odometry correction, paving the way for a robust multi-source localization system.
arXiv Detail & Related papers (2023-03-21T10:30:31Z) - Learning with Limited Samples -- Meta-Learning and Applications to
Communication Systems [46.760568562468606]
Few-shot meta-learning optimize learning algorithms that can efficiently adapt to new tasks quickly.
This review monograph provides an introduction to meta-learning by covering principles, algorithms, theory, and engineering applications.
arXiv Detail & Related papers (2022-10-03T17:15:36Z) - Learning Physical Concepts in Cyber-Physical Systems: A Case Study [72.74318982275052]
We provide an overview of the current state of research regarding methods for learning physical concepts in time series data.
We also analyze the most important methods from the current state of the art using the example of a three-tank system.
arXiv Detail & Related papers (2021-11-28T14:24:52Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Applying Machine Learning in Self-Adaptive Systems: A Systematic
Literature Review [15.953995937484176]
There is currently no systematic overview of the use of machine learning in self-adaptive systems.
We focus on self-adaptive systems that are based on a traditional Monitor-Analyze-Plan-Execute feedback loop (MAPE)
The research questions are centred on the problems that motivate the use of machine learning in self-adaptive systems, the key engineering aspects of learning in self-adaptation, and open challenges.
arXiv Detail & Related papers (2021-03-06T13:45:59Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
democratized learning (Dem-AI) lays out a holistic philosophy with underlying principles for building large-scale distributed and democratized machine learning systems.
Inspired by Dem-AI philosophy, a novel distributed learning approach is proposed in this paper.
The proposed algorithms demonstrate better results in the generalization performance of learning models in agents compared to the conventional FL algorithms.
arXiv Detail & Related papers (2020-07-07T08:34:48Z) - Machine Education: Designing semantically ordered and ontologically
guided modular neural networks [5.018156030818882]
We first discuss selected attempts to date on machine teaching and education.
We then bring theories and methodologies together from human education to structure and mathematically define the core problems in lesson design for machine education.
arXiv Detail & Related papers (2020-02-07T09:43:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.