論文の概要: Physics-Inspired Synthesized Underwater Image Dataset
- arxiv url: http://arxiv.org/abs/2404.03998v1
- Date: Fri, 5 Apr 2024 10:23:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 16:24:44.853168
- Title: Physics-Inspired Synthesized Underwater Image Dataset
- Title(参考訳): 物理にインスパイアされた合成水中画像データセット
- Authors: Reina Kaneko, Hiroshi Higashi, Yuichi Tanaka,
- Abstract要約: PHISWIDは、物理にインスパイアされた画像合成による水中画像処理の強化に適したデータセットである。
以上の結果から,PHISWIDでトレーニングを行う場合の基本的U-Netアーキテクチャでさえ,水中画像強調において既存の手法よりも大幅に優れていたことが判明した。
我々はPHISWIDを公開し、水中イメージング技術の進歩に重要なリソースを提供する。
- 参考スコア(独自算出の注目度): 9.959844922120528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the physics-inspired synthesized underwater image dataset (PHISWID), a dataset tailored for enhancing underwater image processing through physics-inspired image synthesis. Deep learning approaches to underwater image enhancement typically demand extensive datasets, yet acquiring paired clean and degraded underwater ones poses significant challenges. While several underwater image datasets have been proposed using physics-based synthesis, a publicly accessible collection has been lacking. Additionally, most underwater image synthesis approaches do not intend to reproduce atmospheric scenes, resulting in incomplete enhancement. PHISWID addresses this gap by offering a set of paired ground-truth (atmospheric) and synthetically degraded underwater images, showcasing not only color degradation but also the often-neglected effects of marine snow, a composite of organic matter and sand particles that considerably impairs underwater image clarity. The dataset applies these degradations to atmospheric RGB-D images, enhancing the dataset's realism and applicability. PHISWID is particularly valuable for training deep neural networks in a supervised learning setting and for objectively assessing image quality in benchmark analyses. Our results reveal that even a basic U-Net architecture, when trained with PHISWID, substantially outperforms existing methods in underwater image enhancement. We intend to release PHISWID publicly, contributing a significant resource to the advancement of underwater imaging technology.
- Abstract(参考訳): 本稿では,物理にインスパイアされた画像合成による水中画像処理の強化を目的とした,物理にインスパイアされた水中画像データセット(PHISWID)を紹介する。
水中画像強調への深層学習アプローチは一般的に広範囲なデータセットを必要とするが、きれいで劣化した水中画像を取得することは大きな課題である。
いくつかの水中画像データセットが物理学に基づく合成を用いて提案されているが、一般にアクセス可能なコレクションは不足している。
さらに、ほとんどの水中画像合成手法は大気中のシーンを再現するつもりはなく、不完全な拡張をもたらす。
PHISWIDは、色劣化だけでなく、海洋性雪、有機物の合成物、水中画像の明瞭さを著しく損なう砂粒子の影響も示している。
データセットはこれらの劣化を大気中のRGB-D画像に適用し、データセットのリアリズムと適用性を高める。
PHISWIDは、教師付き学習環境におけるディープニューラルネットワークのトレーニングや、ベンチマーク分析における画像品質の客観的評価に特に有用である。
以上の結果から,PHISWIDでトレーニングを行う場合の基本的U-Netアーキテクチャでさえ,水中画像強調において既存の手法よりも大幅に優れていたことが判明した。
我々はPHISWIDを公開し、水中イメージング技術の進歩に重要なリソースを提供する。
関連論文リスト
- Underwater Image Enhancement using Generative Adversarial Networks: A Survey [1.2582887633807602]
ジェネレーティブ・Adversarial Networks (GAN) は水中写真を強化する強力なツールとして登場した。
GANは、海洋生物学や生態系モニタリング、サンゴ礁の健康評価、水中考古学、自律型水中車両(AUV)ナビゲーションなど、現実世界の応用に応用されている。
本稿では,物理・物理フリーモデルからCNNベースモデル,最先端のGANベース手法に至るまで,水中画像強調への主要なアプローチについて検討する。
論文 参考訳(メタデータ) (2025-01-10T06:41:19Z) - Enhancing Underwater Imaging with 4-D Light Fields: Dataset and Method [77.80712860663886]
4次元光場(LF)は、光吸収、散乱、その他の課題に悩まされる水中イメージングを強化する。
水中4次元LF画像強調と深度推定のためのプログレッシブフレームワークを提案する。
学習手法の定量的評価と教師あり訓練のための,最初の4次元LFに基づく水中画像データセットを構築した。
論文 参考訳(メタデータ) (2024-08-30T15:06:45Z) - Physics Informed and Data Driven Simulation of Underwater Images via
Residual Learning [5.095097384893417]
一般的に水中の画像は、光が水中を伝播するにつれて減衰し後方散乱するため、色歪みと低コントラストに悩まされる。
既存の単純な劣化モデル(大気画像の「ヘイジング」効果に似ている)は水中画像の劣化を適切に表現するには不十分である。
水中効果を自動的にシミュレートする深層学習型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-02-07T21:53:28Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - MetaUE: Model-based Meta-learning for Underwater Image Enhancement [25.174894007563374]
本論文では,様々な水中シナリオ下でクリーンな画像を復元するためのモデルに基づくディープラーニング手法を提案する。
メタラーニング戦略は、合成水中データセット上で事前訓練されたモデルを得るために用いられる。
その後、モデルが実際の水中データセットに微調整され、MetaUEと呼ばれる信頼性の高い水中画像拡張モデルが得られる。
論文 参考訳(メタデータ) (2023-03-12T02:38:50Z) - WaterNeRF: Neural Radiance Fields for Underwater Scenes [6.161668246821327]
我々は、物理インフォームド深度推定と色補正を可能にするために、ニューラルレイディアンス場(NeRF)の最先端技術を進めた。
提案手法であるWaterNeRFは,水中画像形成のための物理モデルを用いてパラメータを推定する。
劣化した画像と修正された水中画像と、シーンの深い深さの新たなビューを作成できる。
論文 参考訳(メタデータ) (2022-09-27T00:53:26Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
本稿では,教師なし画像から画像への翻訳フレームワークに基づく水中画像復元手法を提案する。
提案手法は, 生画像と復元画像の相互情報を最大化するために, コントラスト学習と生成敵ネットワークを利用した。
論文 参考訳(メタデータ) (2021-06-20T16:06:26Z) - Generating Physically-Consistent Satellite Imagery for Climate Visualizations [53.61991820941501]
我々は,将来的な洪水や森林再生イベントの合成衛星画像を作成するために,生成的敵ネットワークを訓練する。
純粋なディープラーニングベースのモデルでは、洪水の可視化を生成することができるが、洪水の影響を受けない場所では幻覚的な洪水が発生する。
我々は,地球観測におけるセグメンテーションガイドによる画像と画像の変換のためのコードとデータセットを公開している。
論文 参考訳(メタデータ) (2021-04-10T15:00:15Z) - Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement [78.58603635621591]
画像空間における未ペアの合成-現実翻訳ネットワークの訓練は、厳しい制約下にある。
画像の非交叉シェーディング層とアルベド層に作用する半教師付きアプローチを提案する。
私たちの2段階のパイプラインはまず、物理ベースのレンダリングをターゲットとして、教師付き方法で正確なシェーディングを予測することを学習します。
論文 参考訳(メタデータ) (2020-03-27T21:45:41Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
物理モデルに基づくフィードバック制御と,水中画像の高機能化のための領域適応機構を用いた,新しい頑健な対角学習フレームワークを提案する。
水中画像形成モデルを用いてRGB-Dデータから水中訓練データセットをシミュレーションする新しい手法を提案する。
合成および実水中画像の最終的な改良結果は,提案手法の優位性を示している。
論文 参考訳(メタデータ) (2020-02-20T07:50:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。